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ABSTRACT 

With widespread availability of low cost GPS devices, it is 
becoming possible to record data about the movement of people 
and objects at a large scale. While these data hide important 
knowledge for the optimization of location and mobility oriented 
infrastructures and services, by themselves they lack the 
necessary semantic embedding which would make fully automatic 
algorithmic analysis possible. At the same time, making the 
semantic link is easy for humans who however cannot deal well 
with massive amounts of data. In this paper, we argue that by 
using the right visual analytics tools for the analysis of massive 
collections of movement data, it is possible to effectively support 
human analysts in understanding movement behaviors and 
mobility patterns. We suggest a framework for analysis 
combining interactive visual displays, which are essential for 
supporting human perception, cognition, and reasoning, with 
database operations and computational methods, which are 
necessary for handling large amounts of data. We demonstrate the 
synergistic use of these techniques in case studies of two real 
datasets. 
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1. INTRODUCTION 
In many areas of people’s life and activities it is important to 
understand movement behaviors of people, animals, vehicles, 
particles, or other objects. Thanks to the recent advent of 
inexpensive positioning technologies, data about movement of 
various mobile objects or agents are collected in rapidly growing 
amounts. There is a pressing need in adequate methods for 
analyzing these data and extracting relevant information. The 
existing methods are scarce and mostly not scalable to large data 
volumes. An ongoing EU-funded project GeoPKDD, where we 
participate, aims at developing methods and tools for analysis of 
massive collections of movement data (http://www.geopkdd.eu). 
Generally, data analysis is done for two major purposes, 
understanding and prediction, which are relatively independent. 
Thus, a predictive model (e.g. probabilistic or based on a neural 
network) does not necessarily need to be understood by a human. 
The focus of our group is developing methods to support 
understanding of movement behaviors and mobility patterns. 
Visual representations as an effective way to provide material for 
human’s perception and reasoning play here a crucial role. 
However, when it is necessary to make sense of very large and/or 
complex data, purely visual methods are insufficient. Therefore, 
we suggest an analysis framework that combines interactive 

visual displays, database processing, and computational 
techniques for data transformation and analysis. Essential for 
analysis is the interplay and synergy of the different types of 
techniques.  
The tools we develop are not meant for a specific application but 
for a wide range of analysis tasks and for as diverse types of data 
as movements of people, vehicles, or animals through the 
geographical space and movements of eyes through an image or 
scene in studies of human perception. This is different from such 
works as [13][15] where machine learning methods are devised 
for specific tasks such as recognition of person’s significant 
places, activities, and transportation routines. Before presenting 
our work, we make a brief overview of the relevant literature.  

2. RELATED WORK 
As we have noted, visualization is essential for gaining an 
understanding of data and underlying phenomena. The most 
traditional method for the visualization of movements is arrows or 
flow lines drawn on a map or image [20]. In the research area of 
time geography [8], the technique of space-time cube was 
invented. Two dimensions of the cube represent geographical 
space and the third dimension (usually vertical) represents time. 
Movement behavior of an entity is shown as a three-dimensional 
line connecting successive positions. The inclination of a line 
segment indicates the speed of movement: gradual rise means 
high speed, steep pitch signifies slow movement, and vertical 
segments correspond to time intervals of no movement.  
Currently, animated maps [1][2] and interactive cubes [10][11] 
are widely used to visualise movement data. Map and cube 
displays are complemented with graphs and diagrams exhibiting 
various aspects of the movement [6][9][11][14]. However, purely 
visual methods fail when it is necessary to examine movements of 
multiple entities and/or very long movement histories. 
Most approaches to handling large amounts of movement data 
involve data aggregation. D.Mountain and co-authors (e.g. 
[6][14]) suggest several aggregation-based techniques such as 
temporal histogram, traffic density surface, and accessibility 
surface, which represents travel times from a selected location. 
Similar approaches are described in [7]. Unfortunately, after 
summarizing movement data into surfaces, one can no longer see 
the changes of spatial positions of entities, i.e. the very essence of 
movement is lost. Another approach is suggested in [5]: a convex 
hull containing all trajectories is built, then the central tendency 
and dispersion of the paths are computed, and the averaged path is 
represented on a map. However, this approach works well only 
when the entities move synchronously and follow similar routes. 
Tobler [17][18] suggests that numbers of entities or volumes of 
materials that moved from one place to another can be visualised 
by means of either discrete or continuous flow maps. A discrete 
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map represents the movements by bands or arrows whose width is 
proportional to the volume moved. Continuous flow maps 
represent the movements as vector fields or streamlines and, 
unlike discrete maps, are not limited with regard to the number of 
different locations present in the original data. Flow maps do not 
reflect the temporal dimension of movement data but show 
cumulative movements that occurred during a certain time period. 
However, the concept can be extended to animated flow maps or 
to series of flow maps showing how the flows change over time. 
Another approach to handling large amounts of data is based on 
filtering: a data subset is selected according to a user-specified 
query and then visually examined [10][21]. However, this 
approach does not support an overall view of the data and is 
therefore not sufficient for a comprehensive data exploration. 
Recently, movement data are coming into the focus of research in 
data mining. An example is the work [12] where the approach is 
based on transforming movement data into sequences of symbols, 
which are then used as an input for the computational analysis. It 
is commonly recognized that proper visualization of data mining 
outcomes is essential for a human analyst to be able to interpret 
them. Moreover, interactive visual interfaces can allow the user to 
actively guide the work of computational methods, as a 
compensation for the computer’s inability to incorporate human’s 
tacit knowledge and relevance criteria. 
We apply a multidisciplinary approach to develop a framework 
for the analysis of massive movement data taking advantage of a 
synergy of computational, database, and visual techniques [3]. We 
introduce our framework and demonstrate its effectiveness by 
examples. 

3. EXAMPLE DATASETS 
One of the example datasets we shall use consists of positions of a 
private car, which has been GPS-tracked from December 3, 2006 
till now (the car belongs to a researcher involved in the project 
GeoPKDD, who voluntary collects the data and provides them to 
the partners for testing their methods and approaches). Currently, 
there are more than 100,000 positions, which are stored in a 
relational database. Each record includes the date and time, the 
latitude, longitude, and altitude of the position, the direction and 
speed of the movement, and a few additional fields with 
characteristics of the satellite signals. The temporal spacing of the 
records is irregular, 3 seconds on the average. The data have been 
recorded only while the car moved. 
The second dataset consists of positions of 50 trucks transporting 
concrete in the area of Athens, which were GPS-tracked during 41 
days in August and September 2002. There are 112,300 position 
records consisting of the truck identifiers, dates and times, and 
geographical coordinates. The temporal spacing is regular and 
equals 30 seconds. Unlike the previous case, the positions were 
recorded also when the trucks did not actually move. The data are 
publicly available at the URL www.rtreeportal.org. 
Note that neither dataset contains explicit trips with specified 
origins and destinations. There are also no semantically defined 
places but only geographic coordinates. Hence, trips and places 
have to be extracted from the data by means of analysis. 

4. MOVEMENT ANALYSIS FRAMEWORK 
The framework is introduced through the consideration of generic 
tasks that may arise in the analysis of movement data. 

4.1 Data Preprocessing 
To facilitate analysis of movement data, we perform initial 
preprocessing in the database, which enriches the data with 
additional fields: the time of the next position in the sequence, the 
time interval and the distance in space to the next position, speed, 
direction, acceleration (change of the speed), and turn (change of 
the direction). This operation may take several minutes, but it is 
done only once. Then, the data can be filtered to remove 
sequences of records corresponding to absence of movement, i.e. 
where the distance in space to the next recorded position is below 
a threshold, which should be selected individually for each dataset 
taking into account the nature of the movement. For the first of 
our example datasets, such filtering is not needed since the data 
have been recorded only during car movement. The second 
dataset has been filtered using the threshold 20 meters, which 
reduced the size of the data to about 94,000 position records. 

4.2 Extraction of Significant Places 
One of generic tasks in analyzing movement data is to detect and 
interpret significant places. For the first example dataset, 
significant places include person’s home, work, and regularly 
visited places such as shops. For the second dataset, significant 
places are depots from which the load is taken and places to 
which it is delivered. The knowledge of significant places can 
help in extraction and analysis of trips. 
In many cases, the time spent in a place indicates the significance 
of this place. Thus, a person spends much time at home and at 
work. Considerable times are spent in shops, sport facilities, at 
doctors, etc. This indicator is not perfect: taking children from a 
school may not require much time but staying in a traffic jam may 
be quite long. Still, it is useful to consider the places of stops, 
especially the places of repeated stops. To interpret these places 
and recognize whether they are significant, the analyst may 
overlay them on a map or image of the area where the movement 
took place and look what objects are situated nearby. 
In some applications, the places where moving entities are likely 
to stop, so-called ‘points of interest’ (POI), are known in advance. 
A database of POI may be used for automatic detection of 
significant places. However, such a database may be unavailable, 
or the concept of POI may be inapplicable (as in studies of eye 
movements or behaviors of animals). Besides, places significant 
for an individual may differ from public POI. Hence, visual 
inspection of places of (repeated) stops is often indispensable. 
Our tools provide a convenient user interface for the extraction of 
the positions of stops from the database. In a preprocessed dataset, 
the time interval to the next position, which is available in one of 
the derived fields, indicates the time spent at each position. 
Hence, a database query may extract the records where the time 
interval to the next position exceeds a given threshold. The query 
is built and fulfilled automatically; the user only needs to specify 
the desired threshold. The extraction of stop positions from the 
database takes a very short time. The results are immediately 
shown on a map display as point symbols (small circles) drawn in 
corresponding positions (in eye movement studies, the map 
display may show the observed image rather than represent a 
geographical area). The user can do the extraction several times 
with different threshold values and compare the results. 
After extracting the positions of stops, the analyst may wish to 
differentiate repeated stops from occasional ones. The map 
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display alone is not well suited for this: when positions of two or 
more stops coincide, the point symbols are drawn one on top of 
another. A solution may be the use of spatial clustering, which 
groups close positions into clusters and treats isolated positions as 
“noise”. The clusters are then shown on the map display, where 
they indicate potentially significant places of repeated stops.  
Out toolkit includes a clustering tool implementing the algorithm 
OPTICS [4]. The user needs to specify the maximum allowed 
distance between neighboring objects in a cluster and the 
minimum number of objects in a cluster. The choice of parameter 
values is application-specific. The analyst can try various settings 
since the clustering tool is easy to use and the results are 
immediately seen on the map display. However, the background 
map or image may lack relevant information or the level of detail 
may be inappropriate for interpreting the places of the stops and 
finding significant places. This is the case for both example 
datasets. To compensate for such deficiencies, our toolkit allows 
the analyst to export selected points or clusters of points to 
Google Earth or Google Maps, where they are overlaid on a 
detailed aerial image (this works only for objects having 
geographical coordinates). Such images are helpful when the 
stops occur near recognizable objects. Thus, in analyzing the first 
dataset, we could easily recognize two shopping centers 
frequently visited by the car owner. In analyzing the second 
dataset, we could find two places looking like truck enterprises; 
however, many stops have no clear landmarks nearby.   
Since significant places are not always recognizable on a map or 
aerial image or correspond to public POI, there may be a need in 
additional analysis taking into account not only the geographical 
information. Consideration of the temporal distribution of the 
stops may be very helpful, especially in applications where the 
behaviors of moving entities are linked to temporal cycles. Thus, 
the movement of people is linked to the daily and weekly cycles 
and the movement of animals may be linked to daily and seasonal 
cycles. Let us demonstrate with the example of the car data how 
this can help in interpreting stops and finding significant places. 

 
Figure 1. The temporal histograms show the weekly (A) and 
daily (B) distributions of the stops of the personal car with the 

duration of 3 hours or more. 
We have extracted the positions of the stops lasting 3 hours or 
more and applied the clustering tool, which has produced two 
clusters with sizes 173 and 109 and classified remaining 8 stops 
as “noise”. The results have been visualized on the map display 
by coloring the point symbols denoting the stop positions: each 
cluster is assigned a particular color, and the “noise” is shown in 
gray (the colors are selected automatically, but the user can easily 
change them). Then, we have built two temporal histograms 
(Fig.1) of the distribution of the stop times over the days of a 
week (A) and the hours of a day (B). The colors of the points on 
the map have been transmitted to the histograms, where the bars 
have been divided into colored segments proportionally to the 

number of the members of each cluster fitting in the respective 
time intervals. In Fig.1A we can see that the stops of cluster 1 
(red) occur on all days of the week and the stops of cluster 2 
(blue) from day 1 to day 5, i.e. from Monday to Friday. Fig.1B 
shows us that the stops of cluster 1 occur mostly in the second 
half of the day; the maximum occurrences are from 19 to 20 
o’clock. The stops of cluster 2 occur mostly in the morning hours. 
Such a distribution makes us quite confident that cluster 1 is 
located near person’s home and cluster 2 near person’s work. 
Temporal cycles often interact. Thus, in the behavior of a person, 
daily patterns on working days may differ from those on 
weekends. Our toolkit includes a tool for interactive filtering 
which, in particular, allows the analyst to consider separately the 
daily distribution of the stops occurring on selected days of the 
week. In analyzing the personal car data, we have extracted and 
clustered the positions of stops lasting 30 minutes or more. 
Besides two clusters near person’s home and work, three 
additional clusters have been detected. The time histograms in 
Fig.2 show the daily distribution of the stops of these clusters on 
Saturday and Sunday (A) and from Monday to Friday (B). By 
means of the interactive filtering tool, we have filtered out 
clusters 1 and 2 as well as noise. We have also applied histogram 
zooming for a more convenient consideration of the remaining 
clusters. It may be seen that the stops of clusters 3 (green) and 4 
(orange) occur mostly in the morning and at midday (from 10 to 
14 o’clock) on weekends (Fig.2A) and in the evening on working 
days (Fig.2B); the maximum is attained from 18 to 19 o’clock.  

 
Figure 2. The daily distribution of three selected clusters of 

stops on weekends (A) and on working days (B). 
The observed peculiarities of the temporal distribution evoke a 
hypothesis that the stops of clusters 3 and 4 may be related to 
shopping. The consideration of the positions in Google Earth 
supports this hypothesis. Cluster 5 (purple) contains quite a few 
positions, and their temporal distribution does not allow us to 
guess the purpose of the stops. In Google Earth, the place looks 
like a tennis court, but we are not fully confident. 
In the truck data, we could not detect any suggestive patterns in 
the temporal distribution of the stops. With the help of Google 
Earth, we could confidently recognize only two places of frequent 
stops lasting 3 hours or more; we shall further call them truck 
depots. In fact, the lack of domain knowledge does not allow us to 
choose the right time threshold for the extraction of significant 
places. In particular, we do not know how much time is required 
for loading and unloading of a truck. However, we suspect that 
these times may be quite close to times spent in traffic jams or at 
stations for collecting road tolls. Hence, the approach based on 
time thresholds may have quite a limited applicability in this case. 

4.3 Extraction of Trips 
As we have noted, the movement of an entity is represented in the 
data by merely a sequence of position records. This sequence 
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needs to be partitioned into subsequences corresponding to trips. 
The notion of trip may be application- and goal-dependent; 
therefore, out toolkit for analysis of movement data allows the 
users to divide data in different ways.  
When ‘trip’ means getting from one significant place to another, it 
is reasonable to divide the data into subsequences of positions 
between significant places, which need to be identified earlier. 
However, the desired level of refinement may vary. Thus, in 
analyzing the personal car data, the analyst may wish to consider 
trips from work to home with intermediate stops at one of the 
shopping centers. In this case, it would be inappropriate to split 
the data into trips from work to the shopping centers and from the 
shopping centers to home. 
One of the possible ways of dividing movement data into trips, 
which works quite well for the personal car data, is based on the 
use of a time threshold, similarly to the extraction of the positions 
of stops. When the threshold is large, such as 3 hours, the stops at 
the shopping centers on the way from work to home will be 
included in the trips from work to home. Using a smaller 
threshold, e.g. 15 minutes, will result in smaller trips where the 
shopping centers are destinations or sources. 
In analyzing seasonal migration of animals, ‘trip’ may mean the 
movement of an animal during the entire migration period, e.g. 
the movement of a white stork from Europe to Africa in autumn 
and returning back in spring. Our tool for the extraction of trips 
allows the user to divide movement data according to temporal 
cycles. The user needs to choose the appropriate cycle (yearly, 
weekly, or daily) and one or more positions in this cycle (dates in 
a year, days in a week, or times in a day) to be used as dividers. 
Thus, the analyst of the stork migration data could select the 
yearly cycle and July 1 as the divider.  
Both ways of dividing movement data into trips are implemented 
as database queries, which are hidden from the user behind a 
friendly user interface. The result of a query is a new database 
table containing the same data as the original table with an 
addition of a field with trip identifiers. All records belonging to 
the same trip will have one and the same trip identifier. Now, the 
trips can be visualized on a map display. The visualization of trips 
is discussed in the next section.  
With the truck data, none of the two division methods works 
sufficiently well. There is a need to combine several approaches. 
From the statistics of distances between successive positions of 
the same truck we learn that there are a few very high values (the 
maximum is 23.62 km) indicating lapses in position recording. 
Our division methods include a method for division by a spatial 
gap, i.e. the distance between successive positions exceeding a 
given threshold. In the truck dataset, the average distance between 
positions is 0.21 km, and all but 28 distances are below 1 km. 
Hence, 1 km is a suitable threshold for dividing the data. 
After this preliminary division, which gives us 71 subsequences, 
we can refine them further using the two places we have earlier 
identified as truck depots. It is quite realistic to assume that the 
trucks often started their trips from these places. Hence, it is 
reasonable to apply the following method of division: a sequence 
of positions is split into two parts as it passes one of specified 
places. The places to use for the division must be defined as area 
objects. Such objects can be built manually, e.g. by outlining a 
cluster of points, or automatically by building circles around 
selected clusters. An additional parameter of the method is the 

minimum time spent in a place: when the time is below this 
threshold, no split is made. Dividing the truck data by the place-
based partitioning method using the two places of the truck depots 
and the time threshold of 300 seconds gives us 981 subsequences, 
of which 537 may be interpreted as round trips from one of the 
depots and 347 as round trips from the other depot. There are also 
8 trips between the depots (4 trips in each direction). 
Hence, our toolkit includes four methods for dividing movement 
data into trips: by temporal gap, by temporal cycles, by spatial 
gap, and by specified places. It should be noted that the extraction 
of trips is not done once and forever. The analyst may try various 
methods and/or parameters of division. However, the results of 
divisions are stored in the database and may be reused later.  
When divided data are loaded from the database into the visual 
analytics system, each subsequence of records belonging to one 
trip (i.e. having a common trip identifier) forms a single object. In 
the process of loading, a number of attributes are extracted or 
computed and associated with the trip objects: entity identifier, 
number of positions, duration, date and time of the trip start and 
end, and positions in relevant temporal cycles, i.e. month of a 
year, day of a week, and/or hour of a day.  

4.4 Examination of Trips 
4.4.1 Viewing Individual Trips 
Individual trips are shown on a map display as lines with specially 
marked starts (small hollow squares) and ends (bigger filled 
squares); see Fig.3. When multiple trips are displayed, the lines 
often heavily overlap, which makes the view illegible. Hence, this 
way of presenting trips can only be used in combination with 
interactive filtering tools, such as the time filter (Fig.4). The user 
selects a time interval, and all displays in the system show only 
data from this time interval. When a trip does not fully fit in the 
selected interval, the appropriate part is shown. The user may 
choose a convenient temporal granularity, which may range from 
seconds to years depending on the time span of the data. The time 
filter can also be used as a device for controlling display 
animation. The user can either drag the slider (blue bar in Fig.4) 
representing the selected time interval or use the buttons. 

 
Figure 3. The map shows three selected trips of different 

trucks. The red outlines mark the places of the depots. 
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Figure 4. The interface of the interactive time filter. 

Besides the time filter, there is an interactive attribute filter for 
filtering data on the basis of attribute values. Thus, trips can be 
filtered according to their duration or the entities that moved. It is 
also possible to use the attribute filter for the selection of trips 
according to days of a week or times of a day. 
With the help of Google Earth, selected individual trips may also 
be displayed as three-dimensional lines in a perspective view with 
the vertical dimension representing time, either absolute or 
relative to the start or end of each trip. This is similar to the 
representation of trips in a space-time cube [8][10][11]. 
The tools supporting the consideration of selected individual trips 
are necessary but not sufficient. It is also essential to support an 
overall view of the whole set of trips and comparison between 
subsets of trips. A suitable approach is based on clustering, i.e. 
grouping trips by similarity and consideration of the groups. 

4.4.2 Clustering of Trips 
Trips may be similar in different respects: they may fully or partly 
coincide in space, or just have similar shapes, or have common 
starts and/or ends; they may be fully or partly synchronous or 
disjoint in time but have similar dynamic behaviors. It depends on 
the application and goals of analysis which of these respects are 
relevant. Therefore, it is useful to have a clustering tool allowing 
the analyst to choose an appropriate similarity measure (also 
called distance function) from a number of alternatives. We have 
already mentioned the clustering algorithm OPTICS [4], which 
we used for the clustering of stop positions. In fact, it is not much 
important which particular clustering algorithm to use. The main 
idea is to implement the algorithm in such a way that cluster 
building is separated from the computation of distances and 
neighborhood. As a result, the same algorithm can not only be 
used for the clustering of either points or trips but also for the 
clustering of trips on the basis of various distance functions. 
According to our framework, the toolkit for movement analysis 
should provide a range of distance functions and allow extension 
with new functions. Appropriate distance functions are described 
e.g. in [16][19]. Here we shall demonstrate the benefits of the 
complementary use of several distance functions even when some 
of the functions are quite simple. Irrespective of the function 
chosen, the clustering algorithm uses two parameters: the 
maximum allowed distance between neighboring objects in a 
cluster, which is chosen depending on the application, and the 
minimum size of a cluster. Distance functions may additionally 
have their specific parameters. In the following examples, we 
shall use 3 as the minimum cluster size. 
In analyzing trips, it is often useful to group them by spatial 
closeness of their starts and ends. Adequate for this purpose is the 
function “common start and end” returning the sum of the 
distances between the starts and the ends of two trajectories 
divided by two. Let us apply it to the trips of the personal car 

defined by temporal gaps of 3 hours or more. With the distance 
threshold of 1000m, the tool builds three clusters. Cluster 1 
consists of 110 trips starting around the place of work and ending 
around home (Fig.5), cluster 2 is formed by 111 trips from around 
home to work, and cluster 3 includes 52 round trips starting and 
ending near home. The remaining 17 trips, which have unusual 
starts and/or ends, are classified as “noise”. The examination of 
clusters is supported by one more interactive filtering tool, which 
allows the user to switch the clusters on or off (top left of Fig.5). 

 
Figure 5. A cluster of trips of the car from work to home. 

Fig.5 reveals some peculiarities of the personal car dataset. It may 
be noted that many trips start on streets rather than at work. The 
reason is that the initialization of the GPS device and the search 
for satellites takes time, and the recording of the car positions 
may begin later than the car starts a trip. Positioning errors can 
also be seen: some trips seem to start in a forest or in a field. 
These features of the data made us use the quite big distance 
threshold. 
An important property of the clustering tool is that it takes into 
account data filtering and builds clusters from the currently 
visible subset of data rather than the whole set. This property can 
be utilized, in particular, for the kind of analysis that may be 
called “progressive clustering”: the analyst selects one or a few 
clusters and refines them by re-applying the clustering tool with a 
different distance function or different parameter settings. 
Thus, Fig.6 shows one of possible refinements of the cluster of 
trips from work to home. The trips have been divided into smaller 
clusters according to the routes taken. For this purpose, we have 
used the distance function “common route”, which has been 
devised so that it can tolerate incomplete trip data. The algorithm 
of the function is presented in Fig.7. The idea is that two 
trajectories are repeatedly scanned in search for the closest pair of 
positions. In the course of scanning, two derivative distances are 
computed: the mean distance between the corresponding positions 
and a penalty distance. Skipping a position increases the penalty 
distance (lines 8 and 13). Finding corresponding positions 
decreases the penalty distance (line 18). The final result is the 
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sum of the two derivative distances. The clusters presented in 
Fig.6 have been produced using the distance threshold of 250m. 

 
Figure 6. The trips from work to home have been clustered 

according to the routes taken. 

Algorithm: ”common route” distance function 
Input: trajectories P, Q; distance threshold D 
Output: distance between P and Q 
1. dist = 0; pen = 0      //distance and penalty 
2. n = 0;       //number of corresponding points 
3. i = 1; j = 1   //indices of points in P and Q 
4. WHILE i <= P.length AND j <= Q.length 
5.    d = point_distance(Pi,Qj) 
6.    WHILE i+1 <= P.length AND 
7.          point_distance(Pi+1,Qj) < d 
8.      pen = pen + point_distance(Pi,Pi+1) 
9.      i = i+1; d = point_distance(Pi,Qj) 
10.   END WHILE 
11.   WHILE j+1 <= Q.length AND 
12.         point_distance(Pi,Qj+1) < d 
13.      pen = pen + point_distance(Qj,Qj+1) 
14.      j = j+1; d = point_distance(Pi,Qj) 
15.   END WHILE 
16.   dist = dist + d; n = n + 1 
17.   IF dist / n > D THEN RETURN D*2 END IF 
18.   pen = pen – (D – d) 
19.   i = i + 1; j = j + 1 
20. END WHILE 
21. dist = dist / n 
22. WHILE i <= P.length 
23.   pen = pen + point_distance(Pi-1,Pi) 
24. END WHILE 
25. WHILE j <= Q.length 
26.   pen = pen + point_distance(Qj-1,Qj) 
27. END WHILE 
28. RETURN dist + pen 

Figure 7. The algorithm of the “route similarity” distance 
function. 

Both distance functions introduced so far ignore the temporal 
aspect of the trips. There is a variant of the “common route” 
function, called “common route and dynamics”, which takes this 
aspect into account in the search for corresponding positions. It 
begins with finding the first closest pair of positions, to tolerate 
possible incompleteness of the trajectories, but the following 

corresponding positions are defined by adding a user-specified 
time step to the times of the previous positions. Hence, the 
function groups together trips with close routes and similar 
dynamics, as illustrated in Fig.8. Here, we have applied the 
distance function “common route and dynamics” to the trips of 
cluster 1 in Fig.6 using the distance threshold of 80m and the time 
step of 3 seconds. As a result, the original cluster consisting of 60 
trips has been divided into two sub-clusters containing 18 and 5 
trips, respectively, and “noise”. Fig.8 shows the two sub-clusters. 
The 3D view has been rotated so that the left and right sides of the 
image correspond to south and north, respectively. 

 
Figure 8. Two clusters of trips follow the same route but 

differ in the dynamics. 
Here, the vertical dimension represents the time relative to the 
ends of the trips: the ends of the trips have the same vertical 
position and the remaining points of each line are shifted down in 
relation to this position proportionally to the temporal distance to 
the end of the trip. The lines in yellow and cyan represent the trips 
of the first and second sub-clusters, respectively. On the left and 
in the centre of the image, the vertical positions of the yellow 
lines are higher than those of the cyan-blue lines. This means that 
the trips of the first cluster were shorter in time than the trips of 
the second cluster. The cyan-blue lines are steeper than the yellow 
ones, which signifies that the speeds in the second cluster of trips 
were lower than in the first cluster. 
With the truck data, clustering helps us to check whether the two 
places we have detected are really depots or stations to which all 
trucks repeatedly come. Earlier, we have divided the data into 981 
trips by these two places. If our hypothesis about their role is 
right, all the trips must either start or end at one of them. To check 
this, we apply clustering with the distance function “common start 
and end” and the distance threshold of 1000m. As a result, we 
obtain a cluster of 347 round trips from depot 1, a cluster of 537 
round trips from depot 2, and two clusters with 4 trips in each of 
them starting at one of the depots and ending at the other. 
Now, we focus on the remaining 89 trips and again apply 
clustering using this time the distance function “common start”, 
which returns the distances between the starting positions of the 
trips. As a result, the subset of 89 trips is divided into 37 trips 
starting at depot 2, 10 trips starting at depot 1, and 42 trips (two 
clusters and “noise”) starting elsewhere. Once more, we apply 
clustering to these 42 trips using the distance function “common 
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end” returning the distances between the end positions of the 
trips. The result is a cluster of 33 trips ending at depot 2, a cluster 
of 6 trips ending at depot 1, and three remaining trips, or “noise”. 
Hence, all but 3 trips have their starts and/or ends at depot 1 
and/or depot 2, and most of them are round trips. This strongly 
supports the hypothesis about the role of these two places. 
However, there are three trips that do not visit either of the 
depots. Two of them have a common start and the third trip is 
spatially separated from these two. This result indicates that there 
are at least two additional significant places, which we could not 
identify with the help of Google Earth. A probable reason is that 
the data, which were collected in 2002, are older than the images 
in Google Earth. With the use of the map display, we examine in 
detail the places near the starts and ends of the 3 residual trips and 
find that the areas around the common start of two trips and 
around the end of the third trip were also often visited by other 
trucks and, hence, may be significant. We outline these areas and 
use them to further divide the trips. This gives us 1075 trips. By 
means of clustering, we can now examine this new set of trips. 
Thus, we can learn that 24 trips were made from depot 1 to one of 
the places and 23 trips from this place to depot 1; 63 trips from 
depot 2 to the other place and 60 trips in the opposite direction. 
In this section, we have demonstrated the use of the clustering 
tool. A key feature of it is the possibility to use various distance 
functions, depending on the goals of analysis. This also enables 
the analytical procedure of progressive clustering where clusters 
once obtained are refined through further clustering. 

4.4.3 Summarization of Trips 
The representation of multiple trips by lines does not allow the 
analyst to see how many trips are there and to distinguish frequent 
paths from less frequent and occasional ones. We have devised a 
method for representing multiple trips in a generalized and 
summarized way (Fig.9): arrows (vectors) show the movement 
directions; the thickness is proportional to the number of moves. 

 
Figure 9. Summarized representation of trips: clusters 1-3 

from Fig.7. 

The algorithm of the summarization is given in Fig.10. It 
comprises three major steps: extraction of characteristic points of 
the trajectories, i.e. starts, ends, stops, and turns (lines 1-12); 
generalization from points to areas by building circles around the 

points (lines 13-37); and collecting moves (fragments of the 
trajectories) between pairs of circles (lines 38-58). From the 
resulting set of aggregate moves, a new map layer is built. 
Algorithm: summarization of moves 
Input: set of trajectories S; minimum angle A; 
minimum stop duration D; distance tolerance ε; 
minimum radius R0; maximum radius R 
Output: set of aggregate moves (flows) 

1. //Step 1: extract characteristic points 
2. P = ∅  //set of characteristic points 
3. FOR EACH trajectory T ∈ S 
4.   P = P ∪ {T.first, T.last} 
5.   FOR k = 2 to T.length – 1 
6.     IF (Tk+1.time – Tk.time >= D AND 
7.         point_distance(Tk, Tk+1) < ε) OR 
8.        angle(Tk-1,Tk,Tk+1) >= A THEN 
9.       P = P ∪ {Tk} 
10.     END IF 
11.   END FOR 
12. END FOR 
13. //Step 2: build circles around the points 
14. C = ∅  //set of circles 
15. WHILE P ≠ ∅ 
16.   take point p ∈ P 
17.   c = new circle(c.center.x = p.x, 
18.            c.center.y = p.y, c.radius = R0) 
19.   C = C ∪ {c} 
20.   xmin=xmax=p.x; ymin=ymax=p.y 
21.   Pc = {p} //set of points fitting in c 
22.   prev_size = P.size; P = P \ {p} 
23.   WHILE P ≠ ∅ AND P.size < prev_size 
24.     prev_size = P.size 
25.     FOR EACH point q ∈ P 
26.       IF inside(q,c) THEN 
27.         Pc = Pc ∪ {q}; P = P \ {q} 
28.         xmin=min(xmin,q.x); xmax=max(xmax,q.x) 
29.         ymin=min(ymin,q.y); ymax=max(ymax,q.y) 
30.         c.center.x = (xmin+xmax)/2 
31.         c.center.y = (ymin+ymax)/2 
32.         c.radius =  
33.             min(R, R0+ max(xmax–xmin,ymax-ymin)/2) 
34.       END IF 
35.     END FOR 
36.   END WHILE 
37. END WHILE 
38. //Step 3: summarize moves between the circles 
39. M = ∅  //set of aggregate moves 
40. FOR EACH trajectory T ∈ S 
41.   C0 = find(c0 ∈ C: inside(T.first,c0)); i = 1 
42.   FOR k = 2 to T.length 
43.     IF NOT inside(Tk,c0) THEN 
44.       c1 = find (c1 ∈ C: inside(Tk,c1)) 
45.       IF c1 ≠ null THEN 
46.         m = find(m∈M: m.start=c0 AND m.end=c1) 
47.         IF m = null THEN 
48.           m = new aggregate_move(m.start = c0, 
49.                     m.end = c1, m.moves = ∅) 
50.           M = M ∪ {m} 
51.         END IF 
52.         m.moves = m.moves ∪ [Ti,Tk] 
53.         c0 = c1; i = k 
54.       END IF 
55.     ELSE i = i+1 
56.     END IF 
57.   END FOR 
58. END FOR 
59. RETURN M 

Figure 10. The algorithm of the summarization of moves. 
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Note that an aggregate move is an object containing references to 
the original moves it unites (line 52). This allows the object to 
react to any filter applied to the trajectories. When the user selects 
a subset of trajectories or a time sub-interval, each aggregate 
move checks which original moves satisfy the filter conditions. In 
absence of such moves, the aggregate move does not appear on 
the map; otherwise, the thickness of the vector is adjusted to the 
number of the filter-compliant original moves. If all these moves 
belong to trajectories of the same cluster, the vector is colored in 
the color of the cluster; otherwise, it is shown in gray. 
The 2D summarized view is well suited for simple routes without 
returns and intersections but lacks clarity in more complex cases. 
In the future, we plan to implement a 3D view where the vectors 
are positioned in the vertical dimension according to the relative 
times of the corresponding moves. This will decrease the 
intersections and overlapping of the vectors. 
Besides the spatial summarization, non-spatial aggregation of trip 
characteristics may provide additional insight concerning the 
movement. Thus, the temporal histograms in Figure 11 portray 
the distribution of the start times of trips with respect to the 
weekly and daily cycles. As in Figs.1 and 2, trip clusters and their 
colors have been transmitted to the histograms. Fig.11A shows 
how the three major routes of the personal car from work to home 
are distributed over a week. The eastern route (red) notably 
prevails on Fridays. On Thursdays, the routes via shops 1 and 2 
(blue and green) are chosen as frequently as the eastern route. 
Curiously, the route via shop 1 has never been taken on Tuesday.  

 
Figure 11. Temporal histograms show the distribution of the 
start times in trip clusters over a week (A,C) and a day (B). 

Fig.11B,C show the daily (B) and weekly (C) distributions of the 
start times of the trips of the trucks, which have been clustered 
according to the closeness of their start positions. Clear 
differences can be seen between the distribution patterns of the 
trips originating from depot 1 (red) and depot 2 (yellow). Blue 
and purple correspond to trips from two additionally detected 
significant places. The former tend to occur mostly at midday and 
in the afternoon, the latter show the opposite tendency.  

4.4.4 Examination of Visited Places 
In the course of summarization, not only the moves between the 
generalized places (circles) are collected but also various statistics 
for the places computed: numbers of visits, of different trips, of 
starts and ends; minimum, maximum, mean, and median speeds, 
times spent, turns, etc. Any of these statistics can be visualized. 
Like the numbers of moves, the place visits statistics are 
dynamically re-computed in response to changes of the data 
filtering, and the visualization is automatically updated. 
Fig.12 presents the minimum and median times spent in different 
places by the trucks in the trips originating from depot 1. Filtering 
has been applied to the places: shown are only the places that 

were visited at least twice and the minimum time spent was at 
least 5 minutes. This display allows us to detect the likely 
destinations of the trips. An analyst who knows the destinations 
(e.g. a logistic manager from the truck company) could use this 
display to detect places where much time is lost. The analyst 
might also be interested in looking at the speeds statistics or other 
computed attributes. 

 
Figure 12. The bar charts show the minimum and median 

times spent in different places during the trips of the trucks 
originating from depot 1. 

5. POTENTIAL APPLICATIONS 
The purpose of visual analytics techniques is to help a human 
analyst to understand some data and underlying phenomena. The 
visual analytics framework we have introduced in this paper is 
applicable to diverse movement data. Thus, it can be used in 
studies of individual movement behaviors, including behaviors of 
animals. It can also be used to analyze movements of multiple 
entities for the purposes of city planning, traffic management, 
logistics, optimization of layouts of public venues and shopping 
areas, allocation of facilities or advertisements, and many others. 
At the same time, visual analytics methods are not suitable for 
applications where movement data are used for personalized real-
time services. Such applications require fully automatic methods 
of data processing as, for example, described in [13][15]. 
However, visual analytics may be helpful on the stage when such 
automatic methods are developed and tested. 

6. CONCLUSION 
By example of two different datasets, we have introduced a 
framework for enabling a human analyst to make sense from large 
amounts of movement data initially lacking any semantics. In the 
process of analysis, the meaning appears as the analyst perceives 
information, links it to his/her prior knowledge and evidence from 
other sources, and reasons about it. Interactive visual displays 
play the key role in supporting this process of sense-making but 
are insufficient for analysis of large and/or complex data. 
Therefore, besides interactive displays, the framework includes 
database operations and computations so that the techniques are 
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complementary and mutually reinforcing. The generic database 
techniques enable handling large datasets and are used for basic 
data processing and extraction of relevant objects and features. 
The computational techniques, which are specially devised for 
movement data, aggregate and summarize these objects and 
features and thereby enable the visualization of large amounts of 
information. The visualization enables human cognition and 
reasoning, which, in turn, direct and control the further analysis 
by means of the database, computational, and visual techniques. 
Interactive visual interfaces embrace all the tools.  
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