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ABSTRACT

Although there is a large corpus of research focused on us-
ing machine learning to detect cyber threats, the solutions
presented are rarely actually adopted in the real world. In
this paper, we discuss the challenges that currently limit the
adoption of machine learning in security operations, with a
special focus on label acquisition, model deployment, and
the integration of model findings into existing investiga-
tion workflows. Moreover, we posit that the conventional
approach to the development of machine learning models,
whereby researchers work offline on representative datasets
to develop accurate models, is not valid for many cyberse-
curity use cases. Instead, a different approach is needed: to
integrate the creation and maintenance of machine learning
models into security operations themselves.

1. INTRODUCTION

Over the past decade, various disciplines, from aircraft mon-
itoring and healthcare to IOT engineering and cybersecurity,
have taken up machine learning (ML) systems that monitor
large amounts of data in order to draw conclusions and/or
suggest interventions. By adopting such systems, stakehold-
ers aim to leapfrog traditional post-hoc investigations by
humans and achieve more proactive and predictive analysis
and prevention. In particular, recent years have yielded a
large corpus of research focused on using machine learning
to tackle a wide range of cybersecurity use cases [13]. In an
ideal scenario, machine learning would enable us to quickly
detect precursors to adverse events, enabling institutions to
either prevent or reduce the dwell time of cyberattacks.

A few years ago, our team at PatternEx set out to develop
and deliver a cybersecurity machine learning platform. This
paper summarizes the experience and establishes the key
challenges faced along the way. The most striking observa-
tion is that a common modus operandi in both research and
commercial ventures involves identifying a “labeled dataset”,
generating a complex machine learning model, and declar-
ing victory when high accuracy is achieved. However, the
approaches generally suffer from a lack of realism and rep-
resentativeness [3] and are rarely adopted in the real world.
Moreover, access to representative data is but one of the
roadblocks in cybersecurity. In fact, given the breadth of the
challenges, we predict that making machine learning work
in this domain will be the holy grail of machine learning
systems development:

Kalyan Veeramachaneni
MIT LIDS
Cambridge, MA, 02139, USA

kalyanv@mit.edu

Challenge #1: Where art thou “labels”? A fun-
damental assumption undergirding current efforts in this
area is that “labeled examples” of previous attacks are
readily available or could be easily acquired via an inter-
active system. This assumption is misguided or academic
at best. The acquisition of “labeled datasets” remains
a key barrier to ML adoption, for several reasons: cer-
tain datasets pertaining to previous breaches cannot be
made public due to political or privacy-related concerns,
and the shifting nature of attacks makes it challenging to
maintain up-to-date labeled datasets. We present differ-
ent label acquisition strategies and their benefits, draw-
backs, and challenges in Section 3.

Challenge #2: A giant leap from “AutoML” to
scalable model deployments. The scale of model de-
velopment required for ML-based cybersecurity solutions
to be effective is unprecedented, and must be coupled
with real-world operational settings and requirements. In
a nutshell, supporting the ML-based detection of a wide
range of threats introduces the need to simultaneously an-
alyze a diversity of data sources and to learn and deploy a
large number of disparate machine learning models (each
possibly learned from minimal training examples cata-
logued on a daily basis). Meanwhile, real-time require-
ments demand a complex data processing infrastructure.
The systems currently available for automating machine
learning are dwarfed by the scale and specifics of these
requirements, which we discuss further in Section 4.

Challenge #3: Real-time explanations. In real set-
tings, complex, multi-stage attacks that are worth detect-
ing usually require analyst investigations. This means
that any findings made by ML models must be inte-
grated into existing analyst workflows. In fact, the use of
ML models for detection introduces challenges related to
the interpretability and explainability of machine learn-
ing models. We describe more on this in Section 5.

Challenge #4: It’d take a village. The changing na-
ture of the cyberthreat landscape introduces the need to
create and maintain ML models on a continuous basis.
This requirement involves new tasks and workflows for
the cybersecurity operations workforce, which will need
to be augmented with a new set of roles. We expand
upon this observation in Section 6.

While usage of machine learning for cybersecurity has been
piecemeal basis, the area of machine learning systems de-
velopment has been similar. It seems like the community



is chipping away one problem at a time, AutoML systems
try to find best fit models [10], a separate system helps hu-
mans label datasets [25], another theme of work focuses on
model development and deployment [22] and yet another set
of systems focus on explaining models. Perhaps the most
compelling learning of all for us has been that building a
machine learning driven cybersecurity platform requires all
of the above, which begs the question: would this be the
holy grail of machine learning systems development? We
argue that it is.

2. RELATED WORK

There is a large corpus of research focused on tackling cy-
bersecurity use cases with machine learning. In particular,
there are three cybersecurity problems for which the avail-
ability of labeled datasets has resulted in a proliferation of
machine learning applications: file analysis for malware de-
tection [13], botnet detection [29], and the domain or URL
detection problem [6,20].

However, the cyberattack detection problem spans a wide
range of malicious activities. As of the day of this writ-
ing, MITRE’s ATT&CK initiative [30] lists 282 techniques
used by adversaries at different phases of an attack. There
are isolated works demonstrating the feasibility and bene-
fits of adopting machine learning for the detection of some
of these techniques. To illustrate this point, we provide ex-
amples of works that tackle different stages of an attack:
browser exploits [14], web application attacks [16], TOR con-
nections [18] and VPN traffic [8], lateral movement [31] and
credential access [12], HTTP [7] and DNS tunneling [9, 23],
encrypted malware flows [1], web-based command and con-
trol [33], and data exfiltration [2,19]. While many of these
approaches are promising and convey meaningful insights
into designing detection strategies, they do not discuss how
their methods fit into the type of broader detection strategy
needed in real-world security operations. In fact, the mod-
eling approaches reported in these works must be coupled
with appropriate support in order to function in real life.
In this paper, we discuss these requirements and their as-
sociated challenges in depth, with a special focus on model
deployment and maintenance and the integration of model
findings into existing operational workflows.

3. LABEL ACQUISITION SCENARIOS IN
CYBERSECURITY

In this section, we take a deep dive into cybersecurity’s label
acquisition challenge. To drive the discussion, we first clas-
sify common strategies for label acquisition in Figure 1. The
figure shows a series of paths leading to the acquisition of
labels (numbered from 1 to 7). In the following subsections,
we describe the steps involved in each of these paths, along
with their challenges, benefits, and drawbacks.

3.1 Real data versus lab

The first distinction involves whether the data originates in a
real-world system or organization, or instead is the outcome
of lab simulations. Lab simulations present several benefits:
they are able to simulate a wide range of attacks, and re-
sult in the creation of high-quality (low-noise) data at a fast
pace. This label acquisition strategy corresponds to path (1)
in Figure 1. On the other hand, depending on the simulation
strategy, it is possible data generated in this way will suffer

from a lack of generality, realism, and representativeness [3].
In the authors’ experience, this is particularly the case when
the goal is to generate benign data — shown as path (2) in
the figure — because it is challenging to replicate the great
variety of legitimate activity and traffic patterns observed
in real-world organizations. Therefore, relying on simulated
data alone might prove insufficient to build detection mod-
els, which motivates label acquisition from real-world data.

3.2 Continuous monitoring

This refers to cases where the data has been monitored, an-
alyzed, and investigated in a timely manner (in close-to-real
time), as opposed to cases where the data has been analyzed
and investigated a posteriori. Continuous monitoring occurs
in most medium and large organizations, where a series of
security solutions monitor the traffic and activity at the or-
ganization. Upon the detection of malicious activity, they
either prevent further activities, or generate alerts that are
then reviewed, investigated, and (if necessary) remediated
by a security operations team.

3.3 Analyst confirmation

Alerts generated by continuous monitoring mechanisms are
reviewed and investigated by security analysts. In most se-
curity operations, ticketing systems are used to monitor,
track, and manage alert resolutions, and security analysts
log the investigation outcomes upon closing the tickets that
they are assigned. These logs correspond to a label that
can be leveraged by Al security analytics (paths 3 and 4 in
Figure 1). It is important to stress that labels are being
captured in security operations today.

To put Al security analytics opportunities in context, here
is a high-level view of the different mechanisms used to gen-
erate alerts in today’s security operations:

3.3.1 Detection based on known malicious entities

This detection is performed based on indicators of compro-
mise, such as signatures, file hashes, and IP and URL or
domain blacklists (shown as ”"Repeat entity” in the figure).

3.3.2  Detection based on known malicious activity
patterns

Instead of looking for known malicious entities, this detec-
tion approach leverages existing knowledge of malicious ac-
tivity patterns for detection (shown as ”"Repeat pattern” in
the figure). It is implemented predominantly as rules and (in
isolated cases) as supervised machine learning models; each
method presents its advantages and drawbacks. In a nut-
shell, rules are easy to interpret (more on this in Section 5)
and do not require training data, whereas supervised mod-
els provide improved detection accuracy (if training data is
available) at the cost of interpretability.

3.3.3 Detection based on anomaly detection

This last approach uses anomaly detection to surface rare
activity patterns. These methods rely on baselining strate-
gies, whereby historic activity patterns are modeled and new
activities are assigned a score that captures their deviation
from the norm. The analysis can be built on a population
basis (by obtaining baselines for a group of entities), or on an
individual basis (by obtaining an activity baseline for each
entity). This approach can detect attacks where neither the
entities or the patterns are known a priori, given that the as-
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Figure 1: Label acquisition paths in cybersecurity. The acquisition of labeled data can be the result of lab simulations (1 and
2), analyst investigations (3 and 4), or a posteriori threat hunting exercises (5 and 6).

sociated activity patterns are expected to be different from
previously observed activity. On the other hand, in practice,
they also generate a large number of false alerts, given that
not all anomalies actually correspond to malicious activities.
For instance, activity patterns may present anomalies due to
misconfigurations, seasonality, or legitimate changes in the
activities of the monitored entities, among other reasons.

3.4 A posteriori analysis

As shown in Figure 1, there are two paths leading to a pos-
teriori analysis, often referred to as threat hunting in the
cybersecurity domain. The first path corresponds to cases
where continuous monitoring is in place, i.e. activities that
were monitored and analyzed, but were not alerted upon.
The second case corresponds to scenarios where continuous
monitoring is not taking place. The latter is currently a
frequent situation: for instance, organizations today rarely
perform security analytics on DNS traffic or cloud-based ap-
plications.

A posteriori investigations allow security researchers to per-
form in-depth investigations to understand whether unclas-
sified activities correspond to attacks (path 5 in Figure 1) or
to benign activities (path 6), with the benefit of not having
to comply with deadlines imposed by service level agree-
ments. The drawbacks of this approach are twofold. The
first issue has to do with the timing of the investigations: it is
hard to perform fully-fledged investigations after the fact be-
cause the state of the resources involved in the attack might
have changed, and actors and attack infrastructure might
not be active anymore. This often leads to a roadblock in
these investigations, making it difficult if not impossible to
assess the reach of the analyzed activities, and to determine
whether they were malicious. The second limiting factor is
operational: given that these one-off investigations require
ad-hoc workflows, researchers might require additional tools
and analysis infrastructure that are not readily available at
their organizations, especially in cases where there is a lot
of data to analyze.

4. THE MANIFOLD DEPLOYMENT LEAP

We introduce the challenges involved in building the process-
ing infrastructure necessary to adopt a machine learning-
based attack detection strategy for the cybersecurity do-
main, given the wide range of possible threats and data
sources involved. Such infrastructure would need to in-
gest multiple data sources, analyze the activity of multiple
entities, and leverage machine learning models to generate
alerts.

4.1 A primer on machine learning pipelines

Machine learning pipelines involve a sequence of data trans-
formations that have been devised by experts to score enti-
ties. Generally, we begin by extracting features from times-
tamped log data, and next obtain entity scores using these
extracted features and machine learning models. The steps
involved in ML pipelines are schematically represented in
Figure 2 and detailed in the following.

Step 1: Ingestion of raw logs. Logs are files that reg-
ister a time sequence of events associated with entities in
a monitored system. Logs are generated in a variety of
formats: json, comma-separated-values, key-value pairs,
and event logs (event types are assigned unique identi-
fiers and described with a varying number of fields). The
first step entails parsing these logs to identify entities (e.g,
IP addresses, users, domains, etc.) relationships between
entities (one-to-many or many-to-many), timestamps, data
types and other relevant information about the relational
structure of the data. The data is then stored either in
the relational data model (database) or as-is. Either way,
in this step, a relational model is designed based on prior
knowledge of how the data is collected and what it means.
Step 2: Feature extraction. Once the data has been
parsed into a relational structure, the next step consists of
extracting, for each entity instance, a series of features that
describe its activity. For example, for any given IP address,
we can average the number of bytes sent and received per
connection over a time interval of an hour. The output of
this phase is generally an entity-feature matrix, in which
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Figure 2: A sequence of data transformations performed by machine learning pipelines for cyberthreat detection. From left
to right: a wide range of data sources are ingested and features are extracted to describe the activity of the entities observed
in the data (source IPs, destination IPs, domains, etc.). Finally, a set of machine learning models score the activity of each

entity instance and populate an alert dashboard.

each row corresponds to an instance of an entity and each
column is a feature.

Step 3: Entity scoring. Each entity receives scores gen-
erated by machine learning models. The scores represent
how rare the activity of the entity is in the case of anomaly
detection models, or how closely it resembles a malicious
activity pattern in the case of supervised models.

Step 4: Alert generation. In the final layer, the scores
generated by machine learning models are aggregated into
alerts in a process known as alert correlation [21]. These
alerts populate the alert dashboard and are reviewed by se-
curity analysts.

4.2 Variety of sources

The first challenge involved in incorporating machine learn-
ing into cyberattack detection is the variety of data sources
in the cybersecurity space. In the authors’ experience, orga-
nizations commonly store and index around 50 data sources,
either for forensics or for live analysis. Such variety makes
it challenging to ingest and model the data: on one hand,
parsing logic needs to be developed for each data source, and
on the other hand, the information useful for threat mod-
eling needs to be identified for each source, which remains
a time-consuming process that can only be performed by
skilled domain experts.

This challenge becomes more acute when the goal is to build
generic cybersecurity platforms, because it is then necessary
to account for different products and versions of security de-
vices and applications. In fact, for the categories shown in
Figure 2 such firewalls, DNS, EDR etc., there are multi-
ple solutions that generate logs, with different information
content and different formats. Moreover, log formats are of-
ten augmented over time as improvements are made to the
solutions’ capabilities and new versions are released, which
involves continuous maintenance of the ingestion logic.

4.3 Variety of threats

The biggest challenge for Al security analytics is arguably
the variety of techniques used by attackers. As noted be-
fore, MITREs ATT&CK initiative [30], the most compre-
hensive resource to date, currently lists 282 techniques used
by adversaries in different phases of an attack — an under-
count, given that new techniques are continuously being im-
plemented and used by adversaries.

As shown in Figure 2, analysis of the activity of common
entities such as internal IPs, external IPs, domains, users

etc., can be leveraged in combination with machine learn-
ing models to identify malicious techniques. However, it is
important to note that the activity traces necessary to iden-
tify a given technique can be scattered across data sources.
Therefore, the analysis of cybersecurity data introduces a
many-to-many mapping from data sources to entity activity,
as well as a many-to-many mapping from entity to threat or
technique.

These observations suggest the need for modular pipelines in
which multiple entities are modeled, and where the activity
of a given entity is extracted from multiple data sources and
fed to one or more machine learning models. The design and
implementation of such a manifold system represents an-
other challenge, because most machine learning-ready, end-
to-end analytics solutions aim at supporting a reduced num-
ber of use cases.

4.4 Close-to-real-time requirement

Due to regulation, policy, and/or service-level agreements,
many organizations require incident response times to re-
main in the sub-hour range. This includes the threat detec-
tion step, which in the case of Al security analytics involves
the steps described in Section 4.1, along with investigations
and incident response. This means that threat detection
needs to be performed in close-to-real-time; in the authors’
experience, detection times in the 5 to 15 minute range after
the event are acceptable in operational scenarios.

Despite advances in big data computing, the large scale of
data remains a significant roadblock in the attempt to de-
liver close-to-real-time detections. While some data sources
may be small in size, the daily volume of sources such as
firewall, proxy, or DNS logs range from a few GBs for small
and medium businesses to multiple TBs for large organi-
zations. The ability to process data for machine learning
model consumption at the multi-terabyte scale is achieved
with distributed streaming computing frameworks which, in
turn, introduce a series of maintenance challenges. (While
these maintenance challenges can limit the adoption of Al
security analytics, they are not unique to cybersecurity, and
therefore we consider their analysis out of the scope of this

paper.)

S. EXPLAINING ML-GENERATED ALERTS

In this section, we describe the process that security analysts
currently follow while investigating threats and describe the
challenges associated to integrating ML-generated alerts.
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Figure 3: Schematic representation of the three-layer interface used by security analysts. The alert summary view (left)
displays all the alerts. The event view (center) shows the set of events that were aggregated in the same alert. The raw data
view (right) shows the logs, packets, files, process information, etc. for each event included in the alert.

5.1 Existing analyst interface

Security analysts review alerts and take appropriate actions
to remediate actual threats. Alerts are generated either by
security devices or analytics tools, and are aggregated in a
single area for digestion by the analysts. Figure 3 shows
a schematic representation of a common interface used by
security analysts to review and investigate alerts. As shown
in the figure, the context of each alert is displayed in three
different layers. In the first and highest-level layer, referred
to in this paper as the alert summary view, a dashboard
displays all the alerts that need to be reviewed. Generally,
each alert is contextualized with summary information such
as the detected malicious activity, a risk score, a timestamp,
and the entities involved in the alert. The second layer, the
event view, shows the set of events that were aggregated in
the same alert. The aggregation or alert correlation logic
groups related entities and removes duplicates. (Note that
when a new event takes place, this logic determines whether
an existing alert is updated or a new alert created.) The
third and lowest-level view shows the raw data (logs, pack-
ets, files, process information etc.) that triggered the detec-
tion mechanism for each event included in the alert. This
last view is referred to as raw data view.

5.2 Incorporating ML-generated alerts

We now describe the challenges and strategies involved with
generating the analyst views described above — alert sum-
mary view, event set view, and raw data view — when spurred
by a detection by machine learning models.

5.2.1 Alert summary view:

When machine learning models are added to the existing
set of detection strategies (signatures, blacklists, and rules),
the generation of this view can remain for the most part un-
changed. Given that ML models evaluate the activity of an
entity over a predefined time window, it is straightforward
to retrieve the entity information and the timestamp of any
given detection.

In a case where supervised models are looking for repeating
malicious activity patterns, the identified threat is given by
the class predicted by the classifier. Score are computed as
a function of the class probabilities returned by the classifier
that triggered the alert, among other parameters.

The case of anomaly detection models is arguably more com-
plex. The score is generally a metric that indicates how

much an activity deviates from the norm. However, given
that high scores indicate rare activities, it is harder to de-
termine the threat represented by an activity that is rarely
seen. This limitation arguably introduces a challenge in the
operationalization of anomaly detection-based alerts, given
that analysts are not informed of the specific threats iden-
tified in the analysis.

5.2.2 Eventview:

This view is the result of the alert correlation logic, i.e. the
logic that groups events generated by the different detection
mechanisms. Given that this grouping is often performed
based on the entities involved in the events and the time of
the activities [21], the addition of ML-generated events into
the logic does not introduce additional complexities.

On the other hand, this view shows the mechanism that
triggered the alert. For instance, Figure 3 shows the events
aggregated into Alert 22, where Event 2 was triggered by a
Login rule with id 114. One of the benefits of rule-based de-
tection is that rules are interpretable, such that analysts un-
derstand the activity pattern identified by each rule. Achiev-
ing this with machine learning models is more complex. In
the following section, we describe a series of alternatives that
might allow for a similar view with machine learning models.
Note that we adopt the classification of the approaches and
terminology introduced in the survey of methods for explain-
ing supervised models contributed by Guidotti et al. [11].

1. Use of interpretable models: Also referred to as trans-
parent box design, this is the option to learn inter-
pretable models, such as rules, linear models or de-
cision trees. In this way, a human-readable represen-
tation of the models can be incorporated in place of
the rules or signatures. In the case of decision trees
and linear models, a second option consists of showing
a summarized information of the feature importance
instead of showing the full models.

2. Black-box explanation: There are two principal ap-
proaches to explaining black-box models (tree ensem-
bles, support vector machines, and neural networks).
The first consists of providing a summary of the im-
portance of each of the features. For instance, this
capability is discussed in the seminal paper introduc-
ing random forests [4], while works such as [35] are
model-agnostic.



The second approach consists of showing, rather than
the black-box model, an interpretable surrogate model
(rules, decision trees, or linear models) that mimics
the outputs of the black box. This approximation can
be global, whereby a surrogate model is used for all
the examples in the data, or local, whereby each re-
gion of the data is explained with a different surrogate
model. This way, the user is still presented with an
interpretable model. While initial works considered
global approximation strategies, the lack of fidelity of
the surrogate models for complex applications resulted
in inconsistencies in the explanations. Recent works
show improved results by focusing on local approxi-
mations [15,32].

3. Outcome explanation: Similar to model explanations,
there are two main methods for providing outcome ex-
planations. The first relies on the analysis of the con-
tribution of each feature to a given prediction. Note
again that some specific models, such as random forests,
incorporate this capability out of the box [4], while
model agnostic methods have been developed to pro-
vide this information [26,27,32] for any model that
generates output probabilities. For cases in which a
surrogate model strategy is adopted, outcome explana-
tion is achieved by showing the specific rule or decision
path in a decision tree that triggered the prediction.

One of the shortcomings of these approaches when applied
to cybersecurity is that they use the features associated with
machine learning analysis as a basis to explain the models
or the model outcomes. However, features created by data
scientists are not necessarily interpretable by security ana-
lysts. Therefore, additional care is needed to ensure the use
of interpretable features to generate explanations, and it is
paramount to complement each machine learning alert with
its corresponding raw data.

5.2.3 Retrieving relevant raw data:

To populate the third and lowest-level analyst view, it is nec-
essary to retrieve the raw data corresponding to a machine
learning alert. In cases where the alerted entity presents a
reduced data footprint, this step is straightforward. In fact,
it is enough to retrieve all the logs pertaining to the ana-
lyzed entity, and to rely on the analyst to triage the relevant
information for the investigation.

However, in practice, the footprint of alerted entities is of-
ten large and manual triage is not efficient. For instance,
the network activity of a given endpoint can be captured in
thousands of log lines in firewall and DNS logs. In these
common cases, in order to improve the efficiency of the in-
vestigation, it is necessary to reduce the set of logs displayed
to as context for the analyzed alert. A simple option con-
sists of designing predefined views of the raw data, generally
using a hard-coded time window prior to the alert, and fil-
tering logic to display a reduced set of selected logs, events
(rows), and fields (columns). However, this approach can
prove insufficient when the alert corresponds to an activ-
ity observed for the first time or to variations of existing
attacks. In fact, in these cases, a hard-coded, predefined
contextualization logic might fail to retrieve the raw data
needed to investigate the alert.

Although they are more often used for text, images, and tab-
ular data, certain methods in the explainable machine learn-

Name Example 1 Example 2
date 9/7/2017  9/8/2017
source_ip 10.0.0.4  10.0.0.5
Num. NX domains 16 14

Avg. NX domain length 22.13 21.07
Avg. NX domain digit ratio 0.25 0.17

Avg. NX domain consonant ratio 0.56 0.61

Avg. NX domain vowel ratio 0.12 0.15

Avg. NX domain entropy 3.99 3.97

Example 1: 9/7/2017

timestamp source_ip domain response_code

1:56:55 10.0.0.4  1kir8daphzygb.com NXDOMAIN
1:57:01 10.0.0.4  6xzxrlq0sv21804.com NXDOMAIN
1:57:04 10.0.0.4  di9pplv-l-elsenafnh5pz.com NXDOMAIN
7:59:51 10.0.0.4  7-hxc3uSurnjnf.com NXDOMAIN
10:05:05  10.0.0.4  sdhtbtlfiq.com NXDOMAIN
10:05:12  10.0.0.4  xj316pmquj.com NXDOMAIN
10:05:12  10.0.0.4  2syufo8vsOjprllrla6lmd8q32.com  NXDOMAIN
10:07:44  10.0.0.4  td-k3nctm5-byhdknfd7u.com NXDOMAIN
10:07:47  10.0.0.4  yb7561d71w40yq35n-d3.com NXDOMAIN
10:08:01  10.0.0.4  30x310c-8.com NXDOMAIN
10:08:30  10.0.0.4  sie-tsuw5712m.com NXDOMAIN
10:08:30  10.0.0.4  svczpyl4t3.com NXDOMAIN
10:08:33  10.0.0.4  3tmglapkz4n6pz3074m.com NXDOMAIN
10:10:04  10.0.0.4  v6dutthgl9aqltezqric3llp2rm.com  NXDOMAIN
10:10:14  10.0.0.4  tThoyj6088be546£96hTs . com NXDOMAIN
10:17:15  10.0.0.4  q9eyeqxnudngwO6urnp2f2t2kt.com  NXDOMAIN
12:16:40  10.0.0.4  nu8zmdv2es8lbypbhg-gdnt6kof.com  NXDOMAIN

Example 2: 9/8/2017

timestamp source_ip domain response_code

1:09:21 10.0.0.5  s6qlhjacymsklak6qct7wf.com NXDOMAIN
1:12:07 10.0.0.5  mezm62dw2s6.com NXDOMAIN
2:15:26 10.0.0.5  bv6uyeyfinrScp7iwra2.com NXDOMAIN
3:42:26 10.0.0.5  dbgfeyvvjs.com NXDOMAIN
9:09:13 10.0.0.5  lnmymb6kje7fs.com NXDOMAIN
9:09:13 10.0.0.5  blldighOwa08e306kjy.com NXDOMAIN
9:09:16 10.0.0.5  foidjctjjuvidphz92.com NXDOMAIN
9:09:54 10.0.0.5  hp3k9pOudqrlzs.com NXDOMAIN
9:49:14 10.0.0.5  91-gsckvr7tlxgwv38imph9bt.com NXDOMAIN
9:51:11 10.0.0.5  8zmr-ksvlohihcvnx2.com NXDOMAIN
9:51:11 10.0.0.5  rzlvxe75i21q694.com NXDOMAIN
9:51:36 10.0.0.5  qegxtcgpuyyyqupngj7z.com NXDOMAIN
9:52:42 10.0.0.5  rw8i-ikw.com NXDOMAIN
10:00:31  10.0.0.5  g--13q9czusfvu-sdpOyevpk2p.com  NXDOMAIN

Figure 4: Contextualization of DGA detections with the
features used for machine learning analysis and with relevant
raw logs.

ing literature may apply here. In particular, those methods
that retrieve the discriminant regions of the input data that
determine the model outcome. These regions are referred to
as saliency masks in the context of natural language process-
ing and computer vision [17,28, 34, 36], and are commonly
retrieved via sensitivity analysis [5], whereby perturbations
to the input data and their resulting model outcomes are
jointly analyzed to determine the contribution of each input
region to the model outcome.

In the authors’ experience, retrieving relevant logs is impor-
tant for providing actionable ML-generated alerts, because
features used for machine learning analysis are not always
easy for security analysts to interpret. However, based on
our review of related work, most papers in the machine
learning literature focus on problems in which data takes
the form of images, text, or tables, and do not consider the
timestamped activity logs of relational or transactional data
that are more relevant to cybersecurity use cases. While the
underlying ideas behind these works represent promising ap-
proaches to retrieving relevant raw data in the cybersecurity
applications, the lack of domain-specific demonstrations ar-
guably introduces a challenge for the integration of machine
learning alerts in security operations.

To illustrate this challenge, we next explore the detection of
Domain Generation Algorithms (DGAs), a well-documented
command and control mechanism [24]. DGAs are designed
by attackers to generate dynamic domains that are then used



as meeting points for compromised machines and remote
attackers. The key idea is that the remote attacker and the
compromised machine share the generation logic, and will
therefore generate the same set of domains, each on its own
side. The remote attacker then registers one of the many
domains generated by the algorithm, while the malware in
the compromised machines attempts to connect to each and
every one of the generated domains until a communication
channel is established with the remote attacker.

When such an attack takes place, compromised machines
try to connect to an elevated number of random looking do-
mains, as shown in Figure 4. In doing so, they generate DNS
queries to resolve the domains, most of which fail because
the domains do not exist (NXDOMAIN response code). In
order to detect this type of attack with machine learning,
we analyze the activity of internal IPs (source_ip in the fig-
ure) captured in DNS logs. In particular, we propose using
the following features that quantify the characteristics of the
NXDOMAINS queried by each IP:

1. Number of NX domains queried by the IP
. Average length of the NX domains queried by the IP

. Average digit ratio of the NX domains

2
3
4. Average consonant of the NX domains
5. Average vowel ratio of the NX domains
6

. Average entropy of the NX domains

Figure 4, shows, for two examples, the values of the ex-
tracted features as well as the section of DNS logs used for
the analysis. We argue that, in this case, the logs provide
information that is more helpful and intuitive to analysts
who are trying to determine the presence or absence of a
DGA. As discussed above, the automated retrieval of the
appropriate logs remains an open challenge for the machine
learning and cybersecurity communities.

6. ROLES AND WORKFLOWS

In this section we briefly describe current security operation
workflows, along with the adjustments needed to incorporate
and maintain machine learning-based detection models.

6.1 Existing roles and workflows

Security operation centers (SOCs) split their analysts into
three tiers. The first tier is comprised of the juniormost
analysts, while the most skilled analysts are in tier three.
First-tier analysts perform a first-pass screening and filter-
ing of alerts in order to discard false positives and remediate
common threats. For example, a common tier-1 workflow in-
volves matching alerts against blacklists of known malicious
entities, and adding rules to block further connections to
the matched entities. In cases where the first tier analysts
cannot conclude whether an event is malicious, they escalate
the event for further investigation by a higher-level analyst.
Tier-2 analysts perform investigations and remediations of
escalated alerts, and can in turn pass on events to tier-3
analysts. Generally, only critical alerts requiring advanced
investigation skills, such as reverse-engineering malware, are
escalated to the last layer.

Apart from these layered investigation workflows, SOCs adopt
continuous improvement strategies to maintain appropriate

detection rates as the threat landscape evolves, managing
the mechanisms (rules, threat intelligence sources etc.) that
generate alerts so that mechanisms with inadequate detec-
tion rates are either updated or switched off. Update pro-
cedures include subscription-based feeds, as well as in-house
continuous improvement processes developed by the opera-
tions team. For example, an outdated rule that generates an
elevated number of false positives can be edited or deleted.
Similarly, new detection mechanisms are constantly added
as information about new attacks becomes available.

6.2 Emerging roles and workflows in Al secu-
rity analytics

As described in previous sections, existing mechanisms for

generating alerts do not predominantly rely on machine learn-
ing models. Consequently, current SOC responsibilities fo-

cus on alert investigations and remediations, but do not in-

clude some of the key roles and workflows necessary to oper-

ationalize machine learning models. As shown in Figure 5,

ML workflows introduce three distinct roles: security ana-

lysts, model developers, and machine learning architects.

6.2.1 Al security analytics workflows:

As shown in Figure 5, Al security analytics operations in-
teract with data at different levels. In a nutshell, the initial
steps of big data analytics involve characterizing the activi-
ties of active entities across a variety of data sources. Next,
the deployed models generate alerts that are integrated into
the dashboard for analyst consumption. As such, analysts
review ML-generated alerts in the same way they review
alerts generated by other mechanisms such as rules, signa-
tures, and blacklists. One of the key aspects of this process
is that the investigation outcomes provided by analysts are
stored together with the alert contexts and associated data.
These annotated alerts are leveraged by machine learning
model developers to create new models and improve exist-
ing ones. Finally, an Al security analytics architect decides
on the model deployment strategy and identifies detection
gaps. In the following, we describe in more detail the work
carried out by the different Al security analytics actors.

6.2.2 Security analysts:

The key responsibility of security analysts is still the inves-
tigation and remediation of alerts. Despite the challenges
described in Section 5, the investigation and alert escala-
tion workflows followed by security analysts are not highly
impacted by the inclusion of ML-generated alerts.

6.2.3 Machine learning model developers:

Model developers are charged with the creation and con-
tinuous improvement of detection models. New models are
created to detect new attacks, expanding the detection cov-
erage. On the other hand, improvements to existing models
target a better trade-off between true positives (malicious
findings) and false positives (false alerts). Continuous im-
provement workflows are needed to counter model degrada-
tion caused by an evolving threat landscape.

In the authors’ experience, the shortage of skilled model
developers for cybersecurity represents one of the key chal-
lenges in the adoption of Al security analytics. Working in
this area requires both an extensive knowledge of the cy-
bersecurity domain, in order to understand attacks and how
they manifest in data, along with an understanding of the
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Big data analytics characterize the activities observed from a variety of data

sources. Next, the deployed machine learning models generate alerts that are integrated in the alert dashboard for analyst
consumption. Processed data, in combination with investigation outcomes, are leveraged by model developers to create and
improve models. Finally, an Al security analytics architect defines the deployment strategy.

strengths and limitations of machine learning models. While
frameworks such as [30] describe a large number of attack
techniques, developers need to identify opportunities where
machine learning models can improve the detection capabil-
ities of existing detection mechanisms.

6.2.4 Al security analytics architect:

The responsibilities involved in this role are twofold. Al se-
curity analytics architects are in charge of devising the ma-
chine learning deployment strategy, deciding which models
to deploy in order to obtain an appropriate threat coverage
and an acceptable cost (false positives) versus benefit (true
positives) trade-off. They must also identify gaps in detec-
tion coverage due to a lack of models or degraded model
performance. These findings are then translated into re-
quirements for the development or improvement of models.

7. CONCLUSION

In this paper, we have deeply explored the challenges that
currently limit the adoption of machine learning for threat
detection in real-world security operations. The scope of
these challenges is wide, and the solutions require not only
technological developments, but also changes in the roles
and processes involved in security operations. This paper
has focused on the label acquisition challenge, the processing
capabilities needed to address the many-to-many mappings
of data sources to the wide range of threats that compose the
cybersecurity domain, and the challenges involved in adding
the alerts generated by machine learning models into exist-
ing investigation workflows. Finally, the paper discussed the
operational changes in processes and roles needed to main-
tain a machine learning-based detection strategy over time.
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