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ABSTRACT
Despite the increasing availability of informative video content,
question answering on videos remains an under-researched and
challenging topic. Owing to the free-flowing nature of the verbal
content, long duration of videos and lack of clear demarcations on
where the context is changing, answering questions from video
transcripts remains challenging. We consider the problem of ex-
tracting answers for a given question from a pool of videos and
propose a novel gated neural attention architecture with content
bifurcation module (GABiNet) to infer answers from video content
using transcript data. The proposed GABiNet model is efficient
enough to consider a large number of candidate videos and jointly
learns the question and content representation by incorporating
question information into content representation. To deal with
the lack of demarcation issue, we propose a number of content
bifurcation techniques which enable the neural model to divide the
transcript text into different meaningful chunks to enable tractable
inference of answers. Based on experiments on a large dataset of
educational videos, we investigate the benefits offered by the gating,
attention and bifurcation mechanisms and demonstrate significant
performance gains over a number of established baselines and state-
of-the-art QA(Question Answering) techniques. We contend that
our work is among the first to tackle open-domain question an-
swering on video content, and our findings have implications for
the design of video-based QA systems.

KEYWORDS
Question answering, Attention model, Content Bifurcation, Video
comprehension, Neural model

1 INTRODUCTION
Educators have been recording instructional videos for nearly as
long as the format has existed. In the past decade, though, free on-
line video hosting services such as YouTube have enabled people to
disseminate instructional videos at scale. For example, Khan Acad-
emy videos have been viewed over 300 million times on YouTube
1. Given the prevalence of such informative video content, an in-
creasing amount of users engage with these videos to find answers.
Despite substantial progress in open-domain question-answering

1KhanAcademyYouTube Channel: http://www.youtube.com/user/khanacademy/about
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(QA), answering questions from video remains challenging. While
transcripts are readily available for such video content, given the
free flowing and unstructured nature of verbal content, long du-
ration of videos and the lack of clear demarcations on where the
context is changing, it becomes prohibitive to find the relevant
parts of the video containing the information to answer a given
question.

This paper considers the problem of answering both factoid and
non-factoid questions in an open-domain setting. Most recent work
on question answering techniques has focused on textual content,
and the proposed techniques typically assume that a short piece of
relevant text is already identified and given to the model. This is
not a realistic setting for video QA systems since identifying the
right video from a large collection of video is prohibitively challeng-
ing. Furthermore, the existing techniques assume demarcation of
content into well defined passages (paragraphs, or sections), which
is not the case for video transcripts, which makes it harder to use
existing techniques for video QA.

In this work, we describe a key research challenge faced during
the implementation of a real world video based question answering
system currently running on live traffic. We consider the above
mentioned challenges with existing QA systems, and propose a
novel gated attention based sequential network with content bifur-
cation module (GABiNet) to find the answer to a given question
among a large set of videos. The GABiNet model is composed of five
components: (i) a content bifurcation module to divide the video
transcript into meaningful chunks, (ii) recurrent network encoder
to build representation of questions and chunks, (iii) gated match-
ing layers to match the question and video, as well as to match
the question and chunk, (iv) a self-matching layer to aggregate
information from a chunk and (v) a pointer network based answer
boundary prediction layer.

We investigate a number of different techniques for content
bifurcation, including (i) content based, (ii) temporal based, (iii)
transition Points and (iv) topical drift convolution. The attention
mechanism accounts for the fact that words in the passage are
of different importance to answer a particular question. We learn
a question-aware representation for each bifurcated chunk, and
employ the pointer network for detecting answer spans. The self-
matching mechanism along with the pointer network allows the
model to aggregate evidence from the whole chunk to infer the
answer boundary. Based on a dataset of 15,298 educational videos
and their transcripts, we evaluate the performance of the proposed
neural model and compare with a number of baselines and state-
of-the-art question answering architecture on over 2000 QA pairs
generated by domain experts.

Our results show that the proposed GABiNet architecture is able
to achieve an F1 score of 0.328, which is a gain of over 14% relative
to the best performing baseline(Topical drift 0.288). Additionally,

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Keyword Description
QA Question Answering
KB Knowledge Base
SQuAD Stanford Question Answering Dataset

Table 1: List of abbreviations

we demonstrate that Topical Drift Convolution chunking technique
performs the best with F1 of 0.288, with over 16% improvement over
other bifurcation techniques (Transition Points 0.249). Furthermore,
comparisons with variants of the proposed model demonstrate the
utility and impact of the gating and attention mechanism.

In summary, we make the following contributions:
• We propose a gated attention based architecture (GABiNet)
for the problem of open domain question answering, which,
to the best of our knowledge, is the first attempt at end-to-
end open-domain question answering in the video domain.

• We propose a content bifurcation module with four different
techniques, which allows our model to deal with the issues
around free-flowing nature of video transcripts.

• While most existing QA systems assume that the relevant
text containing the answer is already given, we instead in-
troduce a dual gating mechanisms at video and chunk level,
which allows the model to select from a large number of
candidate videos, and enables it to automatically select the
right chunk (content passage) to select answers from.

• The proposed GABiNet model yields state-of-the-art results
against established strong baselines, with over 20% improve-
ment.

• Lastly, we contribute a labeled dataset of over 2000 question
answer pairs on video data, which is among the first datasets
available on the topic for benchmarking and research pur-
poses.

Apart from being one of the first studies to investigate question
answering on a video transcript dataset, our findings have implica-
tions on the design on scalable video based QA systems.

2 RELATEDWORK
Question Answering was originally defined as finding answers in
collections of unstructured documents, following the setting of the
annual TREC competitions http://trec.nist.gov/data/qamain.html.
With the development of KBs(Knowledge Base), many recent inno-
vations have occurred in the context of QA(Question Answering)
from KBs with the creation of resources like WebQuestions Berant
et al.[3] and SimpleQuestions Hill et al. [14] based on the Free-
base KB Bollacker at al. [4], or on automatically extracted KBs, e.g.,
OpenIE triples and Fader [10].

The subfield ofmachine comprehension, i.e., answering questions
after reading a short text or story, has made considerable progress
recently, thanks to new deep learning architectures like attention-
based andmemory augmented neural networks [1, 5, 11] and release
of new training and evaluation datasets like CNN/Daily Mail based
on news articles [12]), CBT based on children books [14], or SQuAD
[25] and WikiReading [13], both based on Wikipedia. Work done
by Chen et al. [6] and Wang et al. [32] also targeted Wikipedia

text, which is quite clean and highly structured compared to video
transcripts. Significant progress has been made on question answer-
ing for datasets like Wikipedia and SQuAD [2, 7, 8, 16, 22, 27]. An
objective of our paper is to test how such new methods can perform
in a closed domain of educational videos.

Along with close-style datasets, several powerful deep learn-
ing models have been introduced to solve this problem [6, 8, 9, 12,
14, 17, 28–30]. Hermann et al.[12] first introduce attention mecha-
nism into reading comprehension. Hill et al.[14] propose a window
based memory network for CBT dataset. Kadlec et al.[17] introduce
pointer networks with one attention step to predict the blanking out
entities. Sordoni et al.[29] propose an iterative alternating attention
mechanism to better model the links between question and passage.
Trischler et al.[30] solve cloze-style question answering task by
combining an attentive model with a reranking model. Dhingra et
al.[9] propose iteratively selecting important parts of the passage
by a multiplying gating function with the question representation.
Cui et al.[8] propose a two-way attention mechanism to encode the
passage and question mutually. Shen et al.[28] propose iteratively
inferring the answer with a dynamic number of reasoning steps
and is trained with reinforcement learning.

Neural network-based models demonstrate the effectiveness
on the SQuAD dataset. Wan et al.[32] combine match-LSTM and
pointer networks to produce the boundary of the answer. Xiong et
al.[34] and Seo et al.[27] employ variant coattention mechanism to
match the question and passage mutually. Xiong et al.[34] propose
a dynamic pointer network to iteratively infer the answer. Yu et
al.[38] and Lee et al.[20] solve SQuAD by ranking continuous text
spans within passage. Yang et al.[36] present a fine-grained gating
mechanism to dynamically combine word-level and character-level
representation and model the interaction between questions and
passages. Wang et al.[33] propose matching the context of passage
with the question from multiple perspectives.

Video based question answering remains an under-researched
area, with prior work done on investigating QA on news videos
Yang et al.[35], predicting future events using images from videos
Zhu et al.[39] and Li et al.[21]. Despite these efforts, this work is
one of the first efforts to investigate open domain machine compre-
hension for QA on video transcripts.

3 GABINET ARCHITECTURE FOR VIDEO QA
To extract answers from video content, weworkwith transcript data
and propose a gated attention based neural model with content bi-
furcation module to break down a large piece of transcript text into
small chunks and then perform QA on those chunks. The proposed
GABiNet model is a composite architecture with different modules
responsible for different stages of the answer selection process. For
each question, the video retriever (Section 3.1) extracts the top-k
videos and tags them with transcripts. For each retrieved video,
the content bifurcation module (Section 3.2) extracts meaningful
chunks which are then passed onto the gated attention module
(Section 3.3). Finally, the answer generation module considers each
chunk and finds the answer boundaries and outputs its confidence
score for each chunk. The chunk ranking module (Section 3.4) con-
siders all chunks from all videos and ranks the answers based on
the model’s confidence scores and outputs the final answer. We

http://trec.nist.gov/data/qamain.html
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Chunk:- I will not comment on the theological implications of this as-
sertion.The first theoretical calculation of pi was carried out by
Archimedes, a great Greekmathematician from Syracuse, that was about
somewhere around 250 BC. And he said that pi was somewhere between 223
divided by 71, and 22 divided by 7. This was amazingly profound. He knew he
didn’t know what the answer was, but he had a way to give an upper and a
lower bound, and say it was somewhere between these two values.

Question:-Who carried out first theoretical calculation of pi?
Answer:- Archimedes
Predicted:- Archimedes

Table 2: An example from our YouTube video data with chunking.

next describe each module in detail. Figure 1 visually describes the
different component of the proposed GABiNet architecture.

It noteworthy to mention that for informational video content,
in addition to transcript data, raw audio features are also available.
We conducted preliminary experiments with raw audio features
wherein we convert the sound track into transcripts by extracting
MFCC features [19] from audio data from the video and applied
enhancement method (phonetic-based transcript error correction).
Our preliminary experiments using these features did not perform
well, so we preferred working with transcript information for all
experiments. We leave integrating audio features as future work.

3.1 Preprocessing & Video Retriever
Given a question and a large pool of videos, we employ an inverted
index based retrieval module to first narrow our search space and
focus on reading only those videos that are likely to be relevant.
We use an industrial transcript generator to extract textual tran-
script for all videos considered. For each sentence in the transcript,
we additionally tag the sentence with the corresponding time of
utterance. A simple inverted index lookup followed by term vector
model scoring performs quite well on this task for many question
types, compared to Okapi’s BM25 and cosine distance in word
embedding space. Chunks of transcript text and questions are com-
pared as TF-IDF weighted bag-of word vectors. We further improve
our system by taking local word order into account with n-gram
features(especially bigram). To speed up the retrieval process, we
hash the transcripts and videos to the database which makes the
process fast and memory efficient.

The proposed GABiNet model consumes the top-k retrieved
videos with the aim of finding not only the right video but also
inferring the correct answer in the video transcript. The selected
top-k videos for each question are used throughout the paper for
the different experiments.

3.2 Content Bifurcation Module
One key difference between traditional textual content and video
transcript is the lack of demarcation of content into meaningful
paragraphs or sections. The longer the duration of the video, the
longer the transcripted text. To enable tractable inference of an-
swers, we introduce a content bifurcation module with the aim of

dividing the long transcripted text into smaller meaningful chunks.
We consider a number of bifurcation techniques:
(i) Content based: In this approach, we divide the transcript into
equal-sized chunks based on the text size. Each of these chunks are
then fed into the neural model to generate answers.

(ii) Temporal based: Often, different concepts are discussed at
different timestamps in a video. To capture this insight, we segment
the transcript into equal-sized chunks based on time, which are
then fed to the neural model to generate answers.

(iii) Transition Points: The start of a new concept is often signi-
fied by a transition statement. In this approach, we adopt a sliding
window over the sentences of the transcript to detect such transition
points and find segmentation boundaries based on the differences
in the content of adjacent sentences. We run a sliding window over
the sentences, find cosine similarity between each sentence pair in
a sequential manner and find transition indexes based on:

idx = argmin cossim(si , si+1) (1)

where cossim is cosine similarity between sentences and idx is the
index where we can break the transcript and collectively merge
sentences in a continuous fashion within indices.

(iv) Topical Drift Convolution: We go beyond pairwise sliding
windows, and find topical drifts in the video content using a convo-
lutional operator which considers sequential groups of sentences
to detect changes in the topical content. We convolute over a group
of sequential sentences with a sliding window approach and use a
similarity threshold to detect sentence groups which are topically
different to warrant a separate chunk.

idx = argmin cossim(дi ,дi+1) (2)

дi = concat {...., si−2, si−1, si } (3)

дi+1 = concat {si+1, si+2, ...., sk } (4)
where concat is used to group sentences s1, s2, ...., si+1, k is the
idx(this we found in above method of Transition Points) of the
last sentence if this is end of file or is idx of last sentence of a topic
where the topic groups are selected based on some threshold value
of dissimilarity between sentences. Similar to above method, we use
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Figure 1: Overview of the proposed GABiNet architecture.

these groups of chunks and apply the sliding window approach to
separate the not-so-correlated groups from the correlated groups of
sentences. The gated attention model works on the chunks output
from the content bifurcation module.

3.3 Gated Attention based Neural Matching
Model

Given a question and a bifurcated chunkwith tokens {q1,q2, ....,qm }
and {c1, c2, ...., cn } respectively, we develop a gated attention LSTM
model which we apply on the chunk, to learn question representa-
tion and question-aware chunk representation, which are used to
detect answer spans. We next describe the neural matching model
in detail.

3.3.1 Question & Chunk Encoding. We begin by converting all
tokens of chunk and question text into their word embeddings
({eCt }nt=1 and {eQt }mt=1). We used 300-dimensional Glove word em-
beddings Pennington et al.[24] trained from 840BWeb crawl data. In
addition to the embeddings, we consider few hand-crafted features.
We convert the tokens in chunks and question to their lowercase
and lemmatized form and check whether they can be matched. This
basic feature turns out to be extremely helpful. We additionally
extract normalized TF(Term Frequency), POS(Part of Speech) and
named entity tags for ci and qi . These features are concatenated
for each token of chunk and question.

After converting the words in question and chunk to their word-
level embeddings ({eQt }mt=1 and {eCt }nt=1), we used bi-directional

LSTM Hochreiter et al.[15] to produce representation uC1 , ....,u
C
n

anduQ1 , ....,u
Q
m for all words in the chunk and question respectively.

u
Q
t = BiLSTM(uQt−1, e

Q
t ) (5)

uCt = BiLSTM(uCt−1, e
C
t ) (6)

The question and chunk embedding thus obtained are used as their
representation for all further steps.

3.3.2 Gated Attention based neural model. We propose a gated
attention-based recurrent network to incorporate question infor-
mation into chunk representation. It is a variant of attention based
recurrent networks, with an additional gate to determine the im-
portance of information in the given chunk regarding a question.
For a particular question and chunk representation ({uQt }mt=1 and
{uCt }nt=1), RocktÃďschel et al.[26] proposed generating sentence-
pair representation{sCt }nt=1 by aligningwords in question and chunk
as follows:

sCt = BiLSTM(sCt−1, ct ) (7)
where ct = att (uQ , [uCt , sCt−1]) is attention vector of question uQ :

ktj = s
T ReLU (WQ

u u
Q
j +W

C
u uCt +W

C
s sCt−1) (8)

ati = exp(kti )/
m∑
j=1

exp(ktj ) (9)

ct =
m∑
j=1

atiu
Q
i (10)
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where Equation (8) performs a ReLU nonlinearity on top of rep-
resentation of chunk and question. Equation (9) computes the at-
tention score (ati ) which captures the similarity between chunk’s
token ci and question’s token qj . This is a soft match between the
chunk’s token and the question’s token. These features add soft
alignments between similar but non-identical words. Finally, ct
describes aligned embedding of question or rather attention pooled
vector of question uQ .

3.3.3 Chunk Self-Attention Encoder. One problemwith the above
representation is that it has a very limited knowledge of the con-
text. Moreover, the chunk embedded in the above encoder layer is
syntactically divergent to the question given as input. To solve this
problem, we propose direct matching the question-aware passage
representation with itself. It encodes evidence from question and
passage matching words into a new chunk representation hCt :-

hCt = BiLSTM(hCt−1, [s
C
t , ct ]) (11)

where ct = att (sC , sCt ) is attention vector of sC :

ktj = s
T ReLU (WC

s sCj +W
C
s sCt ) (12)

ati = exp(kti )/
m∑
j=1

exp(ktj ) (13)

ct =
m∑
j=1

ati s
C
i (14)

3.4 Answer Generation & Chunk Ranking
For a given question and bifurcated chunk, we compute probability
distribution of the start and end positions of the probable answer in
the chunk (P(start) & P(end)) depending on the degree of relevance
between chunk’s token ci and the question and then produce an
output vector o which is a weighted combination of that chunk
embedding ci :

Pstar t (i) = so f tmaxi haiWshCi (15)

Pend (i) = so f tmaxi haiWehCi (16)
o = arдmaxi j Pstar t (i) ∗ Pend (j) (17)

whereWs andWe are bilinear sequential attention matching terms.
Equation (15) and (16) are multiplicative attention between hidden
representation of passage and question encoding. Using the output
vector o, the system outputs the most likely answer using:

a = arдmaxchunks o (18)

For each bifurcated chunk, the above equation gives us the selected
answer based on the considered chunk.

For a given question, we consider all the retrieved videos and
employ a gating mechanism to adaptively control the input into
the neural model. Specifically, the chunk-level gating mechanism
filters out chunks from across different videos which are not similar
to the question. The resulting set of chunks which pass through the
chunk-level gating mechanism are then ranked using the scores
and the top-k chunks are chosen for evaluation. As described in the
Section 4, we used a ranking based evaluation technique wherein
the ground-truth relevance label on the answer generated by each
chunk is used to compute various metrics.

4 EXPERIMENTAL SETUP
Evaluating the correctness of answers in a video QA domain is
challenging since there exists no publicly available labeled dataset.
In this section, we describe the dataset created via crowdsourcing
for training and evaluating the proposed model (Section 4.1), as well
as the different baselines considered (Section 4.2). Additionally, we
describe the ranking based evaluation setup used for comparisons
(Section 4.3).

4.1 Crowd-sourced Data Collection
While there exist large scale labeled datasets for textual content
QA, an important challenge in video based QA is the lack of labeled
dataset. In this work, we create a new labeled dataset based on
educational videos obtained on Youtube, along side utilizing the
large scale labeled SQuAD dataset for pre-training the model.

Our primary dataset is based on YouTube videos on educational
content available through NPTEL (National Programme on Tech-
nology Enhanced Learning)2. The dataset comprises 15,298 videos,
with over 200 sentences per video. The average time duration of a
video in this dataset is 48 minutes, and the maximum time duration
is 1 hour and 17 minutes. Given the educational nature of videos,
we obtained a set of over 2000 questions from the curriculum, the
answers for which were described in the video lectures.

We employed Amazon Mechanical Turk for getting labeled data
for each question. We followed a rigorous process for the video
annotation task, wherein for each question, a set of videos were
annotated by a minimum of 3 different human judges. Judges were
explained and shown examples of question-answering tasks, and
hidden quality control measures were employed to remove judge-
ments from incompetent judges. We performed post filtering of
judgments based on significant disagreement of the judgewith other
judges, which resulted in an iterative process following which judg-
ments from over 30 judges were removed from the pool of judges.
Overall, we obtained an inter-rater agreement of 0.69 (FleissâĂŹ
kappa) which implies substantial agreement among judges.

4.1.1 Dataset for Distant Supervision. Weuse the SQuADdataset
for pre-training our deep neural model. The Stanford Question An-
swering Dataset (SQuAD) Rajpurkar et al.[25] is a dataset for ma-
chine comprehension based onWikipedia. The dataset contains 87k
examples for training and 10k for development, with a large hidden
test set which can only be accessed by the SQuAD creators. Each
example is composed of a paragraph extracted from a Wikipedia
article and an associated human-generated question. The answer is
always a span from this paragraph and a model is given credit if its
predicted answer matches it.

4.2 Baselines
We compare the proposed GABiNet model with a number of base-
lines. The task of question-answering on video content has not
been well-researched, and there exists few published baseline ap-
proaches to compare with. We instead consider strong baselines
and state-of-the-art approach from neural question answering in
the traditional textual content setting.

2contains video lectures from IITs and IISc
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Method #chunks F1 MRR ndcg@1 ndcg@3

Content

4 0.259 0.138 0.067 0.113
5 0.274 0.137 0.04 0.115
6 0.268 0.146 0.067 0.115

Temporal

4 0.262 0.142 0.173 0.098
5 0.271 0.131 0.212∗& 0.196
6 0.273 0.148 0.135 0.207

Transition Points

4 0.261 0.141 0.15 0.201
5 0.276 0.139 0.117 0.298
6 0.249 0.281∗& 0.117 0.308

Topical Drift

4 0.259 0.172 0.154 0.277
5 0.278 0.198 0.147 0.298
6 0.288∗& 0.211 0.154 0.309∗&

Table 3: Performance of different bifurcation techniques without gating for the top 10 videos. * and & signify statistically
significant difference between the method and the best performing baseline using χ2 test with p ≤ 0.05

Method bleu@1 bleu@2 bleu@3
Baseline 1 0.392 0.542 0.498
Baseline 2 0.433 0.619 0.578
Baseline 3 0.488 0.665 0.611
GABiNet 0.513∗& 0.693∗& 0.663∗&

Table 4: Performance of different methods based on BLEU
scores. * and & signify statistically significant difference be-
tween the method and the best performing baseline using
χ2 test with p ≤ 0.05

• Baseline 1 - (Xiong et al.[34]): A dynamic co-attention net-
work for question answering which fuses co-dependent rep-
resentations of the question and the document and intro-
duces a dynamic pointing decoder iterates over potential
answer spans.

• Baseline 2 (Wang et al.[31]): a machine comprehensionmodel
based on match-LSTM and pointer network, used for ques-
tion answering of textual content.

• Baseline 3 (Chen et al.[6]): a multi-layer recurrent neural
network machine comprehension model trained to detect
answer spans in documents.

• Baseline 4 (Yang et al.[37]): a reading comprehension model
which dynamically combines word-level and character-level
representations with the idea of modeling the interaction
between questions and paragraphs.

Additionally, to evaluate the benefits offered by different compo-
nents of the proposed GABiNet architecture, we compare with
variants of the proposed model:

• Variant 1: The proposed GABiNet model but without gating
and attention mechanism

• Variant 2: The proposed GABiNet model with attention mod-
ule but without gating mechanism

• Variant 3: The proposed model GABiNet with chunk-level
gating only

• Variant 4: The complete GABiNet architecture

4.3 Evaluation Metrics
The goal of the evaluation setup is to evaluate the quality and
correctness of the inferred answer. The proposed GABiNet model
outputs a ranked list of answers, one for each chunk, which we com-
pare with the ground truth answer obtained via crowd-sourcing, to
evaluate the correctness of the inferred answer. Given the ranking
setting, we evaluate the performance of the different techniques
using a number of metrics, including F1 scores, Mean Reciprocal
Rank (MRR) and Normalized Discounted Cumulative Gain (NDCG)
estimates. F1 score measures the overlap between the prediction
and ground truth answers, which takes the maximum F1 over all of
the ground truth answers. MRR evaluates any process that produces
a list of possible responses to a sample of queries, ordered by prob-
ability of correctness. Normalized DCG measures the usefulness of
a document based on its position in the result list, i.e., top results
are more relevant than the bottom ones.

We additionally use the BLEU scores (Bilingual Evaluation Un-
derstudy) from Papineni et al.[23]. BLEU uses a modified form of
precision to compare a candidate answer text against reference
text (ground truth answer). BLEUâĂŹs output is always a number
between 0 and 1. This value indicates how similar the candidate
text is to the reference texts, with values closer to 1 representing
more similar texts.

4.3.1 Parameter Setting. To extract the initial embeddings for
tokens, we used the Glove implementation with 300 dimensions.
We used spaCy3 for tokenization, lemmatization and generating
part-of-speech and named entity tags. We used Glove embeddings
Pennington et al.[24] for word vector representation. We used 3-
layers of bidirectional LSTM with 128 hidden units for both chunk
and question encoding. We used a minibatch size of 32, Adam for
optimization as described in Kingma et al.[18] with hyperparame-
ters such as learning rate(learning_rate) of 0.004, beta_1 as 0.9 and
beta_2 as 0.996. Dropout with p = 0.2 applied to word embeddings.

3spacy v1.7.x Downloaded from: https://spacy.io/
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Method #chunks F1 MRR ndcg@1 ndcg@3

Content

4 0.303 0.318 0.24 0.273
5 0.328 0.319 0.28∗& 0.215
6 0.316 0.31 0.227 0.302

Temporal

4 0.252 0.27 0.227 0.112
5 0.326 0.29 0.253 0.214
6 0.314 0.29 0.227 0.257

Transition Points

4 0.194 0.23 0.187 0.204
5 0.21 0.23 0.173 0.242
6 0.285 0.26 0.2 0.266

Topical Drift

4 0.276 0.28 0.2 0.303
5 0.306 0.31 0.227 0.294
6 0.328∗& 0.32∗& 0.227 0.305∗&

Table 5: Performance of different bifurcation techniqueswith gating. * and& signify statistically significant difference between
the method and the best performing baseline using χ2 test with p ≤ 0.05

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Baseline	1

Baseline	2

Baseline	3

Baseline	4

Variant	1

Variant	2

Variant	3

GABiNet

F1	Scores

Figure 2: Comparing the performance of the baselines and
variants of the proposed approach based on F1 scores on the
labeled dataset.

4.4 Results and Analysis
We leverage the experimental setup described above to evaluate
and compare the performance of the proposed GABiNet architec-
ture with different baselines. We begin by investigating the impact
of pre-training on a different dataset, followed by evaluating the
performance on the main task of finding relevant answers.

4.4.1 Impact of pre-training: Given the scarcity of labeled data
in video domain, we explore the benefits of pre-training on the
SQuAD QA dataset. We pre-train the proposed model on SQuAD
dataset, followed by training on the labeled video QA dataset and
observed a performance gain of over 16% in F1 scores. All further
experiments were performed using this pre-training step.

4.4.2 Finding Relevant Answers. We then examine the perfor-
mance of the various techniques on the task of finding the correct
answer spans on the labeled dataset. Figure 2 presents the F1 score
comparing the performance across the baselines and variants of

the proposed approach. We observe a substantial gain in perfor-
mance for the proposed GABiNet architecture over all baselines
and variants considered. Further, all variants of GABiNet outper-
form the baselines, with Variant 2 performing better than variants
1 and 3, hinting at the benefits offered by the gating mechanism.
A major portion of the performance boost can be attributed to the
introduction of the content bifurcation module, with the complete
GABiNet architecture with the bifurcation module improving F1
scores by over 22% over the best performing baseline. The GABi-
Net architecture used for this evaluation uses the best performing
content bifurcation method.

4.4.3 Impact of Content Bifurcation: We investigate the benefit
of content bifurcation module on question answering performance.
As shown in Figure 2, we observe that content bifurcation with no
attention and with attention neural model help boost the F1 score
by 11.3% and 14.9% respectively. This demonstrates the importance
of bifurcating the transcript text into chunks.

4.4.4 Comparing Different Bifurcation Techniques: Table 5 com-
pares the different content bifurcation techniques. We observe that
fixed width content bifurcation performs better than fixed width
temporal bifurcation, while detecting transition points based on
sentence pairs is not very helpful. However, without gating, detect-
ing topical drift consistently performs better than all other content
bifurcation techniques, with over 1.2%, 1.4% and 3.9% improvement
in F1 score compared with content, temporal and transition bifur-
cation techniques respectively. We present results with chunk sizes
of 4-6 since they performed better than lower and higher number
of chunks across all videos considered. In the future, we intend to
explore adaptive chunk sizes based on the video duration.

We additionally observe a similar trend in the relative perfor-
mance of the different content bifurcation techniques for the NDCG
and MRR metrics. From these results, we see that chunking the
transcripts using the Topical Drift through time approach performs
the best.
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4.4.5 Impact of Chunk-level Gating. Without the chunk-level
gating, all bifurcated chunks from each video were passed to our
neural model. With the chunk-level gating, only selected bifurca-
tions are passed through to our model, which reduces the amount
of noise the model receives and learns from, which in turn makes
the model more efficient to infer the answer. As shown in Table 3,
we observe a general decline in all metrics when compared with
Table 5 which highlights the importance of the gating mechanism.
Indeed, gating mechanism helps reduce noisy input to the model.
Further, we observe a similar trend in performance with topical
drift chunking performing better than most other techniques. We
observe an expected increase in the ndcg@3 estimate over ndcg@1
estimate, with the ranking technique getting more chance to re-
trieve the correct answer with 3 slots. Overall, we observe a dip in
performance to the tune of 12%, which highlights the importance
of including the gating mechanism.

4.4.6 Relevance of Answer. Table 4 shows BLEU score for the
proposed GABiNet model with the best bifurcation technique (Topi-
cal Drift), alongside estimates for the different baselines.We observe
that using 6 chunks leads to the most relevant answer in the form
of the highest BLEU score. The BLEU score is a strong indicator of
the similarity between the inferred answer with the ground truth
answer. We observe a similar trend as the ranking evaluation, with
the proposed GABiNet architecture performing best, with over 22%
improvement over the worst and over 5% boost in BLEU score over
the best performing baseline. These results further indicate and
support the observation that the proposed GABiNet architecture is
better able to infer answers from transcribed video content than
well established baselines.

4.5 Discussion
Different metrics are used for evaluating model performance, such
as F1 score, Mean Reciprocal Rank (MRR), Normalized Discounted
Cumulative Gain (NDCG) and BLEU score. Across all metrics, we
observe a substantial improvement in the ability to infer answers for
the proposed GABiNet architecture over its variants and baselines.
Given the free flow nature of content in videos, and the lack of de-
marcation, the baseline approaches are unable to perform efficiently
while the content bifurcation module helps the GABiNet model to
overcome this issue, by breaking transcripted text into meaningful
chunks. We also observe performance boost by pre-training on a
different unrelated large scale dataset (SQuAD). Even though we
pre-trained on the entire SQuAD, it would be interesting to consider
a more focused relevant subset of data from it to see if having a
more focused distant supervision is more helpful. In terms of atten-
tion and gating mechanism, similar to widely published work, we
observe similar trends which highlight the benefit of considering
attention mechanism. Finally, most existing QA systems assume
the input consists of text which already has the right answer. We
alleviated this constraint and considered many different videos and
relied on the model to not only find the right video and the right
chunk, but also answer from the video. We observed that having
the chunk-level gating mechanism helped in this regard.

5 CONCLUSION
With an increasing number of online courses and educational video
content being generated, video based question answering is an in-
creasingly important problem in an industrial setting. We present
a composite neural architecture (GABiNet) comprised of a gated
attention model with content bifurcation techniques to answer
questions using a video’s transcript. Our findings show a clear
need for considering content bifurcation when dealing with long
duration video content. We further demonstrate that detecting top-
ical shift in video content plays an important role in improving
question-answering performance across three different metrics.
We envision future research to incorporate raw video content and
explore adaptive width bifurcation techniques to jointly learn con-
tent and question representations for machine comprehension for
videos.
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