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ABSTRACT
We consider matrix completion for recommender systems from the
point of view of link prediction on graphs. Interaction data such
as movie ratings can be represented by a bipartite user-item graph
with labeled edges denoting observed ratings. This representation
is especially useful in the setting where additional graph-based side
information is present. Building on recent progress in deep learn-
ing on graph-structured data, we propose a graph auto-encoder
framework based on differentiable message passing on the bipar-
tite interaction graph. In settings where complimentary feature
information or structured data such as a social network is avail-
able, our framework outperforms recent state-of-the-art methods.
Furthermore, to validate the proposed message passing scheme, we
test our model on standard collaborative filtering tasks and show
competitive results.

CCS CONCEPTS
• Computing methodologies→ Learning latent representations;
Machine learning;Neural networks; Factorizationmethods; •Human-
centered computing → Collaborative filtering; Social networks;
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1 INTRODUCTION
With the explosive growth of e-commerce and social media plat-
forms, recommendation algorithms have become indispensable
tools for many businesses.

An important subtask of recommender systems is matrix comple-
tion. In this work, we view matrix completion as a link prediction
problem on graphs: the interaction data between users and items
can be represented by a bipartite graph between user and item
nodes, with observed ratings/purchases represented by links. Pre-
dicting ratings then corresponds to predicting labeled links in the
bipartite user-item graph.

In accordance with this point of view, we propose graph convo-
lutional matrix completion (GC-MC): a graph-based auto-encoder
framework for matrix completion, which builds on recent progress
in deep learning on graph-structured data [1, 4, 5, 7, 13, 17]. The
auto-encoder produces latent features of user and itemnodes through
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a form of message passing on the bipartite interaction graph. These
latent user and item representations are used to reconstruct the
rating links through a bilinear decoder.

The benefit of formulating matrix completion as a link predic-
tion task on a bipartite graph becomes especially apparent when
recommender graphs are accompanied with structured external
information such as social networks. Combining such external infor-
mation with interaction data can alleviate performance bottlenecks
related to the cold start problem. We demonstrate that our graph
auto-encoder model efficiently combines interaction data with side
information, without resorting to recurrent frameworks as in [20].
We furthermore show that in the pure collaborative filtering setting,
our methods is able to compete with recent state of the art methods.

Our main contributions are as follows: (1) we apply graph neural
networks to the task of matrix completion with structured side-
information, and show that our simple message passing model
outperforms more complicated graph-based approaches such as
[20]. (2) we introduce node dropout, an effective regularization
technique that drops out the entire set of all outgoing messages of
a single node with a fixed probability.

The open source implementation of this work can be found at
https://github.com/riannevdberg/gc-mc.

2 MATRIX COMPLETION AS LINK
PREDICTION IN BIPARTITE GRAPHS

Consider a rating matrixM of dimensions Nu × Nv , where Nu is
the number of users and Nv is the number of items. A nonzero
entryMi j in this matrix represents an observed rating from user i
for item j.Mi j = 0 reflects an unobserved rating. See Figure 1 for
an illustration. The task of matrix completion consists of predicting
the value of unobserved entries inM .

In an equivalent picture, matrix completion can be cast as a link
prediction problem on a bipartite user-item interaction graph. More
specifically, the interaction data can be represented by an undirected
graph G = (W, E,R) with entities consisting of a collection of
user nodes ui ∈ Wu with i ∈ {1, ...,Nu }, and item nodes vj ∈
Wv with j ∈ {1, ...,Nv }, such that Wu ∪ Wv = W. The edges
(ui , r ,vj ) ∈ E carry labels that represent ordinal rating levels, such
as r ∈ {1, ...,R} = R. This connection was previously explored
in [16] and led to the development of graph-based methods for
recommendation.

Previous graph-based approaches for recommender systems (see
[16] for an overview) typically employ a multi-stage pipeline, con-
sisting of a graph feature extraction model and a link prediction
model, all of which are trained separately. Recent results, however,
have shown that results can often be significantly improved by mod-
eling graph-structured data with end-to-end learning techniques
[1, 4, 5, 13, 17, 19] and specifically with graph auto-encoders [12, 26]

https://github.com/riannevdberg/gc-mc
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Figure 1: Left: Rating matrix M with entries that correspond to user-item interactions (ratings between 1-5) or missing ob-
servations (0). Right: User-item interaction graph with bipartite structure. Edges correspond to interaction events, numbers
on edges denote the rating a user has given to a particular item. The matrix completion task (i.e. predictions for unobserved
interactions) can be cast as a link prediction problem and modeled using an end-to-end trainable graph auto-encoder.

for unsupervised learning and link prediction. In what follows, we
introduce a specific variant of graph auto-encoders for the task of
matrix completion.Wewill show how graph-based side information
can be incorporated naturally.

2.1 Revisiting graph auto-encoders
We revisit graph auto-encoders, whichwere originally introduced in
[12, 26] as an end-to-end model for unsupervised learning [26] and
link prediction [12] on undirected graphs. We consider the setup
introduced in [12], where the graph encoder model Z = f (X ,A)
takes as input an N × D feature matrix X and a graph adjacency
matrix A, and produces an N × H node embedding matrix Z =
[z1, . . . , zN ]T . The decoder model is a pairwise decoder Ǎ = д(Z ),
which takes pairs of node embeddings (zi , zj ) and predicts entries
Ǎi j in the adjacency matrix. Note that N denotes the total number
of nodes, D the number of input features, and H the embedding
size.

For bipartite recommender graphs G = (W, E,R), we can refor-
mulate the encoder as [Zu ,Zv ] = f (Xu ,Xv ,M1, . . . ,MR ), where
Mr ∈ {0, 1}Nu×Nv is the adjacency matrix associated with rating
type r ∈ R, such thatMr contains 1’s for those elements for which
the original rating matrixM contains observed ratings with value
r . Zu and Zv are now matrices of user and item embeddings with
dimensions Nu × H and Nv × H , respectively. A single user (item)
embedding takes the form of a real-valued vector zui (zvj ) for user i
(item j).

Analogously, we can reformulate the decoder as M̌ = д(Zu ,Zv ),
i.e. as a function acting on the user and item embeddings and return-
ing a (reconstructed) rating matrix M̌ of dimensions Nu × Nv . We
can train this graph auto-encoder by minimizing the reconstruction
error between the predicted ratings in M̌ and the observed ground-
truth ratings inM . Examples of metrics for the reconstruction error
are the root mean square error, or the cross entropy when treating
the rating levels as different classes.

Several recent state-of-the-art models for matrix completion
[6, 15, 23, 28] can be cast into this framework and understood as a
special case of our model. An overview of these models is provided
in Section 3.

2.2 Graph convolutional encoder
In what follows, we propose a particular choice of encoder model
that makes efficient use of weight sharing across locations in the
graph and that assigns separate processing channels for each edge
type (or rating type) r ∈ R. The form of weight sharing is inspired
by a recent class of convolutional neural networks that operate
directly on graph-structured data [1, 4, 5, 13]. The graph convo-
lutional layer performs local operations that only take the direct
neighbors of a node into account, whereby the same transformation
is applied across all locations in the graph.

This type of local graph convolution can be seen as a form of
message passing [3, 7], where vector-valued messages are being
passed and transformed across edges of the graph. In our case, we
can assign a specific transformation for each rating level, resulting
in edge-type specific messages µ j→i,r from items j to users i of the
following form:

µ j→i,r =
1
ci j

Wrx
v
j . (1)

Here, ci j is a normalization constant, which we choose to either
be |N(ui )| (left normalization) or

√
|N(ui )| |N(vj )| (symmetric nor-

malization), withN(ui ) denoting the set of neighbors of user node i .
Wr is an edge-type specific parameter matrix and xvj is the (initial)
feature vector of item node j. Messages µi→j,r from users to items
are processed in an analogous way. After the message passing step,
we accumulate incoming messages at every node by summing over
all neighbors Nr (ui ) connected by a specific edge-type r , and by
accumulating the results for each edge type into a single vector
representation:

hui = σ

[
accum

( ∑
j ∈Ni (ui )

µ j→i,1, . . . ,
∑

j ∈NR (ui )
µ j→i,R

)]
. (2)

Here accum(·) denotes an accumulation operation, such as stack(·),
i.e. a concatenation of vectors (or matrices along their first dimen-
sion), or sum(·), i.e. summation of all messages. σ (·) denotes an
element-wise activation function such as the ReLU(·) = max(0, ·).
To arrive at the final embedding of user node i , we transform the
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Figure 2: Schematic of a forward-pass through theGC-MCmodel, which is comprised of a graph convolutional encoder [U ,V ] =
f (X ,M1, . . . ,MR ) that passes and transforms messages from user to item nodes, and vice versa, followed by a bilinear decoder
model that predicts entries of the (reconstructed) rating matrix M̌ = д(U ,V ), based on pairs of user and item embeddings.

intermediate output hi as follows:

zui = σ (Whui ) . (3)

The item embedding zvi is computed analogously with the same
parameter matrixW . In the presence of user- and item-specific
side information we use separate parameter matrices for user and
item embeddings. We will refer to (2) as a graph convolution layer
and to (3) as a dense layer. Note that deeper models can be built by
stacking several layers (in arbitrary combinations) with appropriate
activation functions. In initial experiments, we found that stacking
multiple convolutional layers did not improve performance and a
simple combination of a convolutional layer followed by a dense
layer worked best.

2.3 Bilinear decoder
For reconstructing links in the bipartite interaction graph we con-
sider a bilinear decoder, and treat each rating level as a separate
class. Indicating the reconstructed rating between user i and item
j with M̌i j , the decoder produces a probability distribution over
possible rating levels through a bilinear operation followed by the
application of a softmax function:

p(M̌i j = r ) =
e(z

u
i )TQr zvj∑R

s=1 e
(zui )TQsvj

, (4)

with Qr a trainable parameter matrix of dimensions H × H , and H
the dimensionality of hidden user (item) representations zui (zvj ).
The predicted rating is computed as

M̌i j = д(ui ,vj ) = Ep(M̌i j=r )[r ] =
∑
r ∈R

r p(M̌i j = r ) . (5)

2.4 Model training
Loss function. During model training, we minimize the following

negative log likelihood of the predicted ratings M̌i j :

L = −
∑

i, j ;Ωi j=1

R∑
r=1

I [Mi j = r ] logp(M̌i j = r ) , (6)

with I [k = l] = 1 when k = l and zero otherwise. The matrix
Ω ∈ {0, 1}Nu×Nv serves as a mask for unobserved ratings, such
that ones occur for elements corresponding to observed ratings in
M , and zeros for unobserved ratings. Hence, we only optimize over
observed ratings.

Mini-batching. We introduce mini-batching by sampling contri-
butions to the loss function in Eq. (6) from different observed ratings.
That is, we sample only a fixed number of contributions from the
sum over user and item pairs. This serves both as an effective means
of regularization, and reduces the memory requirement to train the
model, which is necessary to fit the full model for MovieLens-10M
into GPU memory. We experimentally verified that training with
mini-batches and full batches leads to comparable results for the
MovieLens-1M dataset while adjusting for regularization param-
eters. For all datasets except for the MovieLens-10M, we opt for
full-batch training since it leads to faster convergence than training
with mini-batches in this particular setting.

Node dropout. In order for the model to generalize well to un-
observed ratings, it is trained in a denoising setup by randomly
dropping out all outgoing messages of a particular node, with a
probability pdropout, which we will refer to as node dropout. Mes-
sages are rescaled after dropout as in [24]. In initial experiments
we found that node dropout was more efficient in regularizing than
message dropout. In the latter case individual outgoing messages
are dropped out independently, making embeddings more robust
against the presence or absence of single edges. In contrast, node
dropout also causes embeddings to be more independent of par-
ticular user or item influences. We furthermore also apply regular
dropout [24] to the hidden layer units (3).

Weight sharing. Not all users and items have an equal number
of ratings for each rating level. In the graph convolution layer,
this results in certain columns of the weight matricesWr to be
optimized significantly less frequently than others. Therefore, some
form of weight sharing between the matricesWr for different r is
desirable to alleviate this optimization problem. Following [28], we
implement the following weight sharing setup:

Wr =

r∑
s=1

Ts . (7)

Wewill refer to this type of weight sharing as ordinal weight sharing
due to the increasing number of weight matrices included for higher
rating levels.

As an effective means of regularization of the pairwise bilin-
ear decoder, we resort to weight sharing in the form of a linear
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combination of a set of basis weight matrices Ps :

Qr =

nb∑
s=1

ar sPs , (8)

with s ∈ (1, ...,nb ) and nb being the number of basis weight ma-
trices. Here, ar s are the learnable coefficients that determine the
linear combination for each decoder weight matrixQr . Note that in
order to avoid overfitting and to reduce the number of parameters,
the number of basis weight matrices nb should naturally be lower
than the number of rating levels.

2.5 Input feature representation and side
information

Features containing information for each node, such as content
information, can in principle be injected into the graph encoder
directly at the input-level (i.e. in the form of input feature matrices
Xu and Xv ). However, when the content information does not
contain enough information to distinguish different users (or items)
and their interests, this leads to a severe bottleneck of information
flow. Therefore, in this work, we choose to include side information
in the form of user and item feature vectors xu,fi and xv,fj (for user
node i and item node j) via a separate processing channel directly
into the the dense hidden layer:

zui = σ (Whui +W
u,f
2 f ui ) with f ui = σ (W u,f

1 x
u,f
i + bu ) , (9)

whereW u,f
1 andW u,f

2 are trainable weight matrices, and bu is a
bias. The latent item vectors are obtained similarly with different
weight matricesW v,f

1 andW v,f
2 and bv . The node input feature

matricesXu andXv for the graph convolution layer are then chosen
to contain unique one-hot vector for every node in the graph.

In [25] the authors propose to include content information along
similar lines, although in their case the proposed model is strictly
user- or item-based, and thus only supports side information for
either users or items.

3 RELATEDWORK
3.1 Auto-encoders
User- or item-based auto-encoders [23, 25, 28] are a recent class of
state-of-the-art collaborative filtering models that can be seen as a
special case of our graph auto-encoder model, where only either
user or item embeddings are considered in the encoder. AutoRec
by [23] is the first such model, where the user’s (or item’s) partially
observed rating vector is projected onto a latent space through an
encoder layer, and reconstructed using a decoder layer with mean
squared reconstruction error loss.

The CF-NADE algorithm by [28] can be considered as a special
case of the above auto-encoder architecture. In the user-based set-
ting, messages are only passed from items to users, and in the item-
based case the reverse holds. Note that in contrast to our model,
unrated items are assigned a default rating of 3 in the encoder,
thereby creating a fully-connected interaction graph. CF-NADE
imposes a random ordering on nodes, and splits incoming messages
into two sets via a random cut, only one of which is kept. This
model can therefore be seen as a denoising auto-encoder, where
part of the input space is dropped out at random in every iteration.

3.2 Factorization models
Our model is related to a number of matrix factorization (MF) tech-
niques: Probabilistic matrix factorization (PMF) [18] takes a proba-
bilistc approach in solving the MF problem M ≈ UVT . BiasedMF
[14] improves upon PMF by incorporating a user and item specific
bias, as well as a global bias. Neural network matrix factorization
(NNMF) [6] extends the MF approach by passing the latent user
and item features through a feed forward neural network. Local
low rank matrix approximation [15], introduces the idea of recon-
structing rating matrix entries using different (entry dependent)
combinations of low rank approximations.

3.3 Matrix completion with side information
In matrix completion (MC) [2], the objective is to approximate the
rating matrix with a low-rank rating matrix. Rank minimization,
however, is an intractable problem, and [2] replaced the rank mini-
mization with a minimization of the nuclear norm (the sum of the
singular values of a matrix), turning the objective function into a
tractable convex one. Inductive matrix completion (IMC) [9] incor-
porates content information of users and items in feature vectors
and approximates the observed elements of the rating matrix as
Mi j = xTi UV

Tyj , with xi and yj representing the feature vector of
user i and item j respectively.

The geometric matrix completion (GMC) model proposed by
[10] introduces a regularization of the MC model by adding side
information in the form of user and item graphs. In [21], a more
efficient alternating least squares optimization optimization method
(GRALS) is introduced to the graph-regularized matrix completion
problem.

Closely related to our work is RGCNN [20]. They explore the
application of spectral graph filters based on Chebyshev polyno-
mials [4] of the k-nearest neighbor graphs of users and items. This
is combined with a recurrent estimation of the interaction matrix.
In contrast, our model is based on neural message passing directly
on the interaction graph (which is related to using a first order ex-
pansion of spectral filters [13]). Furthermore, we model the rating
graph directly in a single encoder-decoder step instead of using a
recurrent estimation, which leads to significant speed-ups.

Lastly, we note that concurrently to our work Ying et al. [27]
developed PinSage, a highly scalable graph convolutional network
for recommendation on web-scale graphs based on the GraphSAGE
[8] framework, where neighborhoods are subsampled to enhance
scalability. In contrast to their work, we focus on the inclusion of
graph-based side information, e.g. in the form of social network
graphs, and further introduce regularization techniques that im-
prove generalization.

4 EXPERIMENTS
We evaluate our model on a number of common collaborative
filtering benchmark datasets: MovieLens1 (100K, 1M, and 10M),
Flixster, Douban, and YahooMusic. The datasets consist of user rat-
ings for items (such asmovies) and optionally incorporate additional
user/item information in the form of features. For Flixster, Douban,

1https://grouplens.org/datasets/movielens/

https://grouplens.org/datasets/movielens/
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Dataset Users Items Features Ratings Density Rating levels

Flixster 3,000 3,000 Users/Items 26,173 0.0029 0.5, 1, . . . , 5
Douban 3,000 3,000 Users 136,891 0.0152 1, 2, . . . , 5
YahooMusic 3,000 3,000 Items 5,335 0.0006 1, 2, . . . , 100
MovieLens 100K (ML-100K) 943 1,682 Users/Items 100,000 0.0630 1, 2, . . . , 5
MovieLens 1M (ML-1M) 6,040 3,706 — 1,000,209 0.0447 1, 2, . . . , 5
MovieLens 10M (ML-10M) 69,878 10,677 — 10,000,054 0.0134 0.5, 1, . . . , 5

Table 1: Number of users, items and ratings for each of the MovieLens datasets used in our experiments. We further indicate
rating density and rating levels.

and YahooMusic we use preprocessed subsets of these datasets pro-
vided by [20]2. These datasets contain sub-graphs of 3000 users and
3000 items and their respective user-user and item-item interaction
graphs (if available). Dataset statistics are summarized in Table 1.

For all experiments, we choose from the following settings based
on validation performance: accumulation function (stack vs. sum),
whether to use ordinal weight sharing in the encoder, left vs. sym-
metric normalization, and dropout ratep ∈ {0.3, 0.4, 0.5, 0.6, 0.7, 0.8}.
Unless otherwise noted, we use the Adam optimizer [11] with a
learning rate of 0.01, weight sharing in the decoder with 2 ba-
sis weight matrices, and layer sizes of 500 and 75 for the graph
convolution (with ReLU) and dense layer (no activation function),
respectively. We evaluate our model on the held out test sets using
an exponential moving average of the learned model parameters
with a decay factor set to 0.995.

4.1 MovieLens 100K
For this task, we compare against matrix completion baselines that
make use of side information in the form of user/item features. We
report performance on the canonical u1.base/u1.test train/test split.
Hyperparameters are optimized on a 80/20 train/validation split of
the original training set. Side information is present both for users
(e.g. age, gender, and occupation) and movies (genres). Following
[21], we map the additional information onto feature vectors for
users and movies, and compare the performance of our model
with (GC-MC+Feat) and without the inclusion of (GC-MC). Note
that GMC [10], GRALS [21] and sRGCNN [20] represent user/item
features via a k-nearest-neighbor graph. We use stacking as an
accumulation function in the graph convolution layer in Eq. (2),
set dropout to 0.7, and use left normalization. GC-MC+Feat uses
10 hidden units for the dense side information layer (with ReLU
activation) as described in Eq. 9. We train both models for 1,000
full-batch epochs. We report RMSE scores averaged over 5 runs
with random initializations3. Results are summarized in Table 2.

4.2 MovieLens 1M and 10M
We compare against current state-of-the-art collaborative filtering
algorithms, such as AutoRec [23], LLorma [15], and CF-NADE
[28]. Results are reported as averages over the same five 90/10
training/test set splits as in [28] and summarized in Table 3. Model
2https://github.com/fmonti/mgcnn
3Standard error less than 0.001.

Model ML-100K + Feat

MC [2] 0.973
IMC [9] 1.653
GMC [10] 0.996
GRALS [21] 0.945
sRGCNN [20] 0.929
GC-MC (Ours) 0.910
GC-MC+Feat (Ours) 0.905

Table 2: RMSE scores, for theMovieLens 100K task with side
information on a canonical 80/20 training/test set split. Side
information is either presented as a nearest-neighbor graph
in user/item feature space or as raw feature vectors. Baseline
numbers are taken from [20].

choices are validated on an internal 95/5 split of the training set.
For ML-1M we use accumulate messages through summation in
Eq. (2), use a dropout rate of 0.7, and symmetric normalization.
As ML-10M has twice the number of rating classes, we use twice
the number of basis function matrices in the decoder. Furthermore,
we use stacking accumulation, a dropout of 0.3 and symmetric
normalization. We train for 3,500 full-batch epochs, and 18,000
mini-batch iterations (20 epochs with batch size 10,000) on the
ML-1M and ML-10M dataset, respectively.

Model ML-1M ML-10M

PMF [18] 0.883 –
I-RBM [22] 0.854 0.825
BiasMF [14] 0.845 0.803
NNMF [6] 0.843 –
LLORMA-Local [15] 0.833 0.782
I-AUTOREC [23] 0.831 0.782
CF-NADE [28] 0.829 0.771
GC-MC (Ours) 0.832 0.777

Table 3: Comparison of average test RMSE scores on five
90/10 training/test set splits (as in [28]) without the use of
side information. Baseline scores are taken from [28]. For
CF-NADE, we report the best-performing model variant.

https://github.com/fmonti/mgcnn
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4.3 Flixster, Douban and YahooMusic
These datasets contain user and item side information in the form
of graphs. We integrate this graph-based side information into our
framework by using the adjacency vector (normalized by degree)
as a feature vector for the respective user/item. For a single dense
feature embedding layer, this is equivalent to performing a graph
convolution akin to [13] on the user-user or item-item graph.4 We
use a dropout rate of 0.7, and 64 hidden units for the dense side
information layer (with ReLU activation) as described in Eq. 9. We
use a left normalization, and messages in the graph convolution
layer are accumulated by concatenation (as opposed to summation).
All models are trained for 200 epochs. For hyperparameter selection,
we set aside a separate 80/20 train/validation split from the original
training set in [20]. For final model evaluation, we train on the
full original training set from [20] and report test set performance.
Results are summarized in Table 4.

Model Flixster Douban YahooMusic

GRALS 1.313/1.245 0.833 38.0
sRGCNN 1.179/0.926 0.801 22.4
GC-MC 0.941/0.917 0.734 20.5

Table 4: Average RMSE test set scores for 5 runs on Flixster,
Douban, and YahooMusic, all of which include side informa-
tion in the form of user and/or item graphs.We replicate the
benchmark setting as in [20]. For Flixster, we show results
for both user/item graphs (right number) and user graph
only (left number). Baseline numbers are taken from [20].

4.4 Cold-start analysis
To gain insight into the use of side information by the GC-MC
model, we study the performance of our model in the presence
of users with only very few ratings (cold-start users). We adapt
the ML-100K benchmark dataset, so that for a fixed number of
cold-start users Nc all ratings except for a minimum number Nr
are removed from the training set (chosen at random with a fixed
seed across experiments). Note that ML-100K in its original form
contains only users with at least 20 ratings.

We analyze model performance for Nr ∈ {1, 5, 10} and Nc ∈
{0, 50, 100, 150}, both with and without using user/item features as
side information (see Figure 3). Hyperparameters and test set are
chosen as before, i.e. we report RMSE on the complete canonical
test set split. The benefit of incorporating side information, such as
user and item features, is especially pronounced in the presence of
many users with only a single rating.

4.5 Discussion
On the tasks with both user and item side information, our model
outperforms relatedmethods.Most related to ourmethod is sRGCNN
by [20] that uses graph convolutions on the k-nearest neighbor
4With a row-normalized adjacency matrix instead of the symmetric normalization
from [13]. We found that both perform similarly in practice.
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Figure 3: Cold-start analysis forML-100K. Test set RMSE (av-
erage over 5 runs with random initialization) for various set-
tings, where only a small number of ratings Nr is kept for a
certain number of cold-start users Nc during training. Stan-
dard error is below 0.001 and therefore not shown. Dashed
and solid lines denote experiments without and with side
information, respectively.

graphs of users and items, and learns representations in an iterative
manner using recurrent neural networks. Our results demonstrate
that a simple auto-encoder model with message passing instead on
the bipartite interaction graph can outperform a more complicated
recurrent estimation.

A possible reason for the increased performance can be the differ-
ence in the graph onwhich the message passing occurs. In sRGCNN,
the k-nearest neighbour graphs for users and items respectively
are used for message passing. Therefore, messages are only passed
among users and between items. In contrast, our method uses the
graph of observed ratings for message passing. As a result, mes-
sages are sent from users to items and items to users. Note that in
the side information setting, we also use the k-nearest neighbor
graphs as provided by Monti et al. [20] to compute side information
features.

A second difference occurs in the approximation of the corre-
sponding graph Laplacian: sRGCNN uses a Chebyshev expansion
(of the user and item k-nearest neighbor graphs), which for a given
order p takes into account messages from neighboring nodes up to
p hops away. Our method is related to using a first-order approx-
imation (of the bipartite interaction graph for each rating type),
such that only the direct neighbors of each node are accessed. This
first-order approximation scheme has been shown to improve per-
formance [13].

Our results on ML-1M and ML-10M demonstrate that it is possi-
ble to scale our method to larger datasets, putting it into the vicinity
of recent state-of-the-art collaborative filtering user- or item-based
methods in terms of predictive performance. At this point, it is
important to note that several techniques introduced in CF-NADE
[28], such as layer-specific learning rates, a special ordinal loss
function, and the auto-regressive modeling of ratings, can be seen
as orthogonal to our approach and can be used in conjunction with
our framework.
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5 CONCLUSIONS
In this work, we have introduced graph convolutional matrix com-
pletion (GC-MC): a graph auto-encoder framework for the matrix
completion task in recommender systems. The encoder contains a
graph convolution layer that constructs user and item embeddings
through message passing on the bipartite user-item interaction
graph. Combined with a bilinear decoder, new ratings are predicted
in the form of labeled edges.

The graph auto-encoder framework naturally generalizes to in-
clude side information for both users and items. In this setting, our
proposed model outperforms recent related methods, as demon-
strated on a number of benchmark datasets with feature- and graph-
based side information. In settings without side-information, our
model achieves results that are competitive with recent state-of-
the-art collaborative filtering methods.

Our model can be extended to large-scale multi-modal data (com-
prised of text, images, and other graph-based information). In such
a setting, the GC-MC model can be combined with recurrent or
convolutional neural networks.
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