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ABSTRACT
With the popularity of deep learning, the increasing complexity of
deep learning models, and the availability of very large datasets,
model training has become a time-consuming process. One way to
make this process efficient is to distribute training across multiple
GPUs and nodes, and many deep learning frameworks now support
distributed training. In this paper, we survey the various distributed
versions of popular deep learning frameworks. We analyze their
performance from the practitioner’s point of view and compare
them on the basis of various indicators including time, memory, and
accuracy. We show that there are measurable differences between
various frameworks. We also provide a qualitative comparison that
measures community popularity, functionality, compatibility, and
ease-of-use. We believe this multi-faceted comparison will allow
practitioners to make an informed choice on which framework to
use when conducting distributed training of deep learning mod-
els. We also open source the benchmark pipeline so that newer
frameworks (or newer versions of existing frameworks) may be
compared as and when they become available.

CCS CONCEPTS
• Software and its engineering→ Software libraries and repos-
itories; • Computing methodologies → Neural networks; Dis-
tributed programming languages;
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1 INTRODUCTION
Deep Neural Networks (DNNs) have achieved great success in
many application domains including computer vision [13], natural
language processing [5], and speech recognition [8]. And specif-
ically in the computer vision domain, Convolutional Neural Net-
works (CNNs) have improved results on object recognition and
object detection and enabled industrial applications such as disease
∗This work was done while the authors were at Robert Bosch LLC.
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diagnosis and autonomous driving [9, 18]. These improvements
have, however, come at the cost of increasingly complex models
with millions of parameters that need to be trained over ever larger
datasets.

Training a CNN model is a time-consuming process. To speed
up this process, three general directions can be pursued. First, spe-
cialized processors, (Graphics Processing Units (GPUs), TPUs etc.)
and software libraries (CuDNN, fbfft) can be used. Second, addi-
tional computational resources can be deployed in a distributed
paradigm. Third, better algorithmic methods that lead to faster con-
vergence can be developed and applied. In this paper, we focus on
the second direction, namely, that of speeding up development and
deployment using a distributed approach. At the time of writing,
the on-demand price of GPU instances is up to 3 US dollar per hour,
which is significantly cheaper than the time cost of engineers.

Many of the popular open source Deep Learning (DL) frame-
works now offer distributed versions that allow the user to train
models that utilize multiple GPUs and even multiple nodes. We in-
vestigate how these different distributed versions stack up against
each other. We evaluate these frameworks along two dimensions
- quantitative and qualitative. We measure performance in terms
of time, memory usage, and accuracy for Caffe2, Chainer, CNTK,
MXNet, and Tensorflow as they scale across multiple GPUs and
multiple nodes. We compare performance on two representative
datasets (Cifar-10 and ImageNet) and various batch sizes to better
understand how these frameworks perform under distributed loads.
We also measure certain qualitative aspects of these frameworks to
present a more rounded picture of their adoption and ease-of-use.
These measures include popularity, functionality, and compatibil-
ity, as measured by Github stars, Application Programming Inter-
faces (APIs), and availability of pre-trained models among other
attributes.

Previous work has evaluated the training and inference per-
formance for multiple models and frameworks [3]. However, that
work only analyzed single CPU/GPU performance. With the field
evolving fast, and the availability of distributed frameworks, a new
analysis is needed. More recent work [22] has analyzed the perfor-
mance of distributed DL frameworks, but it does not provide an
empirical evaluation. In this paper, we are addressing the problem
of which DL framework to use from a practitioner’s perspective.
The key contributions of this paper include:

(1) An empirical evaluation of the performance of distributed
DL frameworks for different use cases.
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(2) A usability analysis that combines the empirical evaluation
with qualitative data that identifies the strength and weak-
ness of the frameworks.

(3) Open source templates that the community can use to ana-
lyze the different frameworks for their particular problem
sets.

2 DEEP LEARNING FRAMEWORKS
While there are a number of DL frameworks in use, in this paper we
focus on those open-source packages that support distributedmodel
training and development. We selected five popular frameworks
and leave the rest for a future study.

• Caffe21 is a light-weight and modular DL framework open
sourced by Facebook. It emphasizes model deployment for
edge devices and model training at scale.

• Chainer2 [20] is a flexible DL framework developed by Pre-
ferred Networks that provides an intuitive interface and
high performance implementation. The distributed version
is ChainerMN [2]. Rather than separate the definition of a
computational graph from its use, Chainer uses a strategy
called "Defined-by-Run" where the network is created when
the forward computation takes place.

• Microsoft Cognitive Toolkit (CNTK)3 [21] is a commercial-
grade distributed deep learning toolkit developed at Mi-
crosoft. It also has advanced algorithms but these are not
under open-source licenses.

• MXNet is a flexible and efficient library for deep learning, fea-
turing high-level APIs. It is sponsored by Apache Incubator
and selected by Amazon as its choice for DL.

• Tensorflow4 is a general numerical computation library for
data flow graphs. It was developed by Google Brain Team
and is currently an open source project for machine learning
and deep learning domains.

Deep Learning for Java (DL4J)5 is an open source project for
JVM that is natively distributed by integrating with Hadoop and
Spark. Although it also supports Python in the Skymind Intelligence
Layer (SKIL), it targets a different community and we skip it in our
analysis.

PyTorch6 is another deep learning framework but its support for
distributed computing is still in a early stage of development and is
excluded from our analysis.

There is an open-source Theano-MPI project [14] that supports
multi-GPU, multi-node training. But since the development of
Theano has been stopped7, we exclude it from the comparison.

3 COMPARISON OF USABILITY
In this section, we compare the feasibility and usability of the differ-
ent frameworks. Distributed model training requires special skills,
however we do see the benefits brought by the frameworks with

1https://caffe2.ai/
2https://chainer.org/
3https://docs.microsoft.com/en-us/cognitive-toolkit/
4https://www.tensorflow.org/
5https://deeplearning4j.org/
6http://pytorch.org/
7See https://groups.google.com/forum/#!topic/theano-users/7Poq8BZutbY

easy user interfaces. In this work, we focus on the model devel-
opment and deployment rather than support for extending and
improving the framework itself (for example by adding new op-
timizers or loss functions). We first investigated the usability of
high-level APIs. And after that, we focused on the model library
and other extensions. We also comment on the package setup with
an emphasis on the procedure for distributed use. Finally, the com-
parison in this section generally applies to the single GPU training,
and it is a supplement to the previous benchmark studies.

3.1 APIs
APIs provide a high-level abstraction to the framework. Thus, a
user-friendly API is crucial to efficiently developing newDLmodels.
Also, consistent APIs simplify the search for the best model. We
compared the high level API definitions of the frameworks along
seven different categories:

• Activation functions control how information and gradient
flow through the network layers. Besides the commonly used
Rectified Linear Unit (ReLU), many others have been pro-
posed, but their performances are not consistent for different
models and datasets [15]. So a high-level API that enables
practitioners to easily change the activation function is an
important feature. Both Chainer and Tensorflow provide
rich collections of activation functions for users to choose
from. In Caffe2, activation functions are not listed separately,
so we did not extract the exact number from the API docu-
mentation and listed it as None in Table 1. Similarly, CNTK
supports 6 activation functions as part of BrainScript, but
not independently in the main framework. So we also listed
it as None.

• Initialization functions are crucial for effectively training
DNNs and there are several theoretical approaches as well
as best-practice heuristics in the literature [6]. A collection of
such functions would also help users to fine-tune their model.
Caffe2 lags behind the other frameworks in the number of
such initialization functions that are available.

• Loss functions are critical to the optimization process. Chainer
has the most extensive collection of loss functions among
all the frameworks.

• Evaluation functions such as accuracy, while secondary to
the loss function, are also an important part of the evaluating
model performance. Tensorflow provides the largest number
of evaluation functions among all frameworks.

• Neural Network (NN) functions are the basic building blocks
of DNNmodels and a framework that provides more building
blocks makes it easier to construct different type of architec-
tures. However, because different frameworks have different
abstractions, a straightforward comparison of the number
of such building blocks should be taken with a grain of salt.
For instance, Tensorflow has separate functions for convolu-
tions in 1,2, and 3 dimensions while CNTK provides a single
abstraction with the dimension as a parameter.

• Optimization functions are important for model training and
critical for the convergence rate. There are many variants
have been proposed [11, 16, 17] and CNTK leads the pack in
the number of supported methods.

https://caffe2.ai/
https://chainer.org/
https://docs.microsoft.com/en-us/cognitive-toolkit/
https://www.tensorflow.org/
https://deeplearning4j.org/
http://pytorch.org/
https://groups.google.com/forum/#!topic/theano-users/7Poq8BZutbY
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• Regularization functions also impact on the model perfor-
mance (J. Dutta et al. in prep). However the explicit support
for separate regularization functions is still limited across
all frameworks.

In Table 1, we compare the numbers retrieved from different
frameworks on Feb 7, 2018.We automatically extracted the numbers
from the official framework websites (see Comparison folder in
the open source project). The pages that we used to extract the
numbers can be found at Comparison/url_table.json. We want to
highlight that the numbers are from high level APIs and do not
count the contributions scattered outside of the main document.
Also sometimes the numbers are not fully comparable, as in the
example with Tensorflow and CNTK above.

Overall, Tensorflow has the best coverage on high-level APIs.
Chainer and MXNet have fewer NN layers available to use directly.
Caffe2 and CNTK miss some aspects from the API level but are
strong on available NN and optimizer APIs, respectively.

3.2 Model Library and Usability
We highlight several other important aspects to measure the usabil-
ity of the frameworks and provide a brief summary in Table 2.

• Model library: A pre-built model library is a good starting
point for many applications. We extracted the number of
such pre-trained models from the official websites. Both
CNTK and Tensorflow have the largest libraries that support
models for different types of DL problems. In comparison,
the other frameworks provide limited coverage.

• Documentation: Good documentation is crucial for users
and developers. Currently, compared to other frameworks,
Caffe2’s documentation is still a work in progress.

• ONNX: Open Neural Network Exchange (ONNX) format
helps users to easily reuse DL models across frameworks.
Currently all compared frameworks support ONNX, except
Tensorflow,which requires an independent backend (onnx-tf
package).

• Visualization: A graph representation of a DNN helps users
more easily debug their models. Tensorflow and CNTK uses
Tensorboard to both visualize the NN architecture and in-
vestigate and monitor the values during the training process.
The other frameworks also have their tools for NN visual-
ization but are relatively weak in tracking values during the
training stage.

• Deployment: Deploying models into the final production
line is a crucial step for industrial applications. Tensorflow
provides an interface for serving models for large-scale ap-
plications and a second lite-version for mobile deployment.
Caffe2 is designed for mobile deployment and CNTK is best
for corporate settings with Windows machines or Azure
Cloud. Chainer and MXNet lack support for deploying mod-
els.

We measured the popularity of the frameworks by the number
of stars, followers, and forks on Github (Table 3). Tensorflow is the
most popular choice among all the frameworks.

3.3 Framework Setup
In this section, we compare the ease of setup for the frameworks.
A brief summary is listed in Table 4.

3.3.1 Single Node Setup. One advantage of using Python is the
low maintenance on software packages. Python package manage-
ment system, pip, simplifies the Python library setup process. Most
of the DL frameworks are compatible with it, except Caffe2 at the
moment. However we still encountered some problems:

• Ambiguous CPU and GPU packages: the default pip package
of MXNet and Tensorflow are for CPU only. It is easy for
new users to accidentally select the default package and use
the CPU instead of the GPU for training.

• Non-compatible CUDA libraries: CUDA and CuDNN are
the foundation of most of DL frameworks. However with
the fast upgrade pace of both the frameworks and CUDA,
these are occasionally mismatched and become incompatible.
For instance, the pre-built Tensorflow version 1.5 package
requires CUDA 9.0whereas the documentation is still written
for CUDA 8.0 8.

• OS requirement: Most packages are prebuilt for Ubuntu, Ma-
cOS, and Windows. The support for Redhat/CentOS systems
is missing at the moment.

Besides the above mentioned issues, most of the frameworks re-
quire additional setup for distributed computation. We will discuss
them in the next section.

3.3.2 Multiple Node Setup. The setup of the distributed frame-
work falls into three difficulty levels9:

• Caffe2 requires compilation with additional flag
-DUSE_REDIS=ON for the distributed version. In addition, Caffe2
also requires either a Network File System (NFS) or a Redis
server for the communication between nodes. In this study,
we used a Redis server setup.

• Chainer provides a pip package for single GPU training.
And for the distributed version, the ChainerMN package and
Message Passing Interface (MPI) are required.

• CNTK is built for distributed deep learning. There is no
additional setup needed, except MPI is required to run the
distributed training.

• MXNet requires an additional compilation flag
USE_DIST_KVSTORE=1 to enable the distributed training. Also
an additional package dmlc and its corresponding drivers
are needed to launch the distributed job.

• Tensorflow is self-contained that no other package is needed.

3.3.3 Code Conversion from Single Node to Multiple Node. The
level of difficulty to convert the existing code for multi-GPU and
multi-node training is also important for practitioners. In this aspect,
Chainer and CNTK require only minor changes to the codebase
with high-level APIs to transfer existing code to the distributed
version. Also leveragingMPI, it is very easy to use these frameworks
at runtime. Both Caffe2 and MXNet requires minor changes to the
existing code. In addition, Caffe2 requires jobs to be submitted

8https://www.tensorflow.org/install/install_linux retrieved on Jan 31, 2018
9The detailed installation setup can be found in our open-sourced experiment code
under installation/setup.sh.

Comparison/url_table.json
https://www.tensorflow.org/install/install_linux
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Table 1: Framework Functionality Comparison

Framework Activation Evaluation Initializer Loss NN Optimizer Regularizer
Caffe2 None None 2 6 64 9 2
Chainer 17 7 14 20 28 9 None
CNTK None 3 10 8 20 17 None
MXNet 4 10 13 12 25 9 None
tensorflow 10 33 10 14 90 8 1

Table 2: Functionality

Framework Model ONNX Visual. Deployment
Caffe2 7 Native net_drawer iOS/Android
Chainer 13 Native dot None
CNTK 47 Native Tensorboard Windows/Azure
MXNet 9 Native plot_network None
Tensorflow 44 onnx-tf Tensorboard Server/mobile

Table 3: Framework Popularity Comparison

Framework Star Watcher Fork Created
caffe2 7225 521 1670 2015-06-25
chainer 3459 300 918 2015-06-05
cntk 13798 1333 3645 2015-11-26
mxnet 12995 1116 4781 2015-04-30
tensorflow 88544 7399 43157 2015-11-07

Table 4: Framework Setup Comparison

Framework Single Node Multi Node
Installation Installation Runtime Code

Caffe2 source source scrip Medium
Chainer pip pip mpi Easy
CNTK pip pip mpi Easy
MXNet pip source dmlc Medium
Tensorflow pip pip script Hard

individually on each node. And MXNet requires a driver code based
on the dmlc-core/tracker library to start the training process via
MPI, ssh, or other resource management tools. Tensorflow requires
the most changes due to the parameter-server setup. And both the
parameter servers and the workers need to be started individually,
which is not user-friendly.

4 COMPARISON OF PERFORMANCE
4.1 Data and Model Selection
We choose use the most representative data and model to evaluate
the framework performance rather than explore the wide spec-
trum of models, which is economically challenging. We choose the
commonly-used Cifar-10 [12] and ImageNet [10] as the evaluat-
ing datasets. Although the images of Cifar-10 is very small, it still
represents many vision-based use cases. For the model choice, we

implement the ResNet model [7], which contains most of the build-
ing blocks in modern CNN architectures. In addition, it is flexible
with the network depth that we can easily switch between model
complexity. In this work, we focus on the most popular ResNet-50
model.

4.2 Experiment Setup
All experimentswere performed on theAmazonWeb Service (AWS)10
P2.xlarge instances. The P2.xlarge instance is equipped with one
NVIDIA Tesla K80 GPU and four AWS-Specific version of Intel’s
Broadwell processor, running at 2.7 GHz 11.

In the multi-node case, the network bandwidth (10 Gbps) is
default for all cases. The data is pre-loaded in memory, so disk I/O is
not a problem. In real applications, the disk I/O has critical impact on
the training performance. But the problem can be partially resolved
by using approaches like parallel data input pipelines, faster hard
disks, etc.

We used Ubuntu 16.04 (ami-1ee65166) as the base OS and the
following versions of associated software: Nvidia driver: 8.0.61-1,
CUDA: 8.0, CuDNN: 6.0; Caffe2: 0.8.0; CNTK: 2.3.1; MXNet: 1.0.0;
Tensorflow: 1.4. We used OpenMPI 3.0.0 except for CNTK where
we chose 1.10.3 due to compatibility reasons.

Except for Tensorflow, we use the latest versions of all other
packages. Tensorflow 1.5 uses CUDA 9 by default. As we are using
CUDA 8 for the other software frameworks, we choose an earlier
Tensorflow version (1.4) instead.

For the EC2 instances, we choose the instances on the spot and
no dedicated host has been used. Persistence mode is turned on for
all GPUs before measurements.

We use the images per second as our measure of framework
speed. For each speed measurement, we typically run 64-256 itera-
tions to get enough time interval measurements. And we skip the
first 10 iterations in our calculation because the initialization of

10https://aws.amazon.com/
11https://aws.amazon.com/blogs/aws/new-p2-instance-type-for-amazon-ec2-up-to-16-gpus/
retrieved at Feb 8, 2018.

https://aws.amazon.com/blogs/aws/new-p2-instance-type-for-amazon-ec2-up-to-16-gpus/
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the model typically has an impact on the first few iterations (see
Figure 1).

Figure 1: GPU training speed at each iteration for Cifar-10
and ResNet-50 with batch size of 256. Notice how the initial
runs take longer.

Figure 2: Memory usage for ResNet-50 on Cifar-10 dataset
with single GPU.

4.3 Memory
Memory usage is an important measure of the performance of
frameworks. The maximum size of a mini-batch is bounded by the
available GPU memory. And a larger mini-batch size can lead to
both higher throughput and model convergence [23].

We compared the ResNet-50 model [7] on Cifar-10 dataset [12]
in Figure 2. The model contains 11.7 million weights to be trained.
We used the memory usage from nvidia-smi and for Tensorflow,
we set gpu_opentions.allow_growth to True to prohibit the Ten-
sorflow script from taking the full GPU memory.

Our results show that MXNet has better memory management
comparing to other frameworks, and Chainer has the largest mem-
ory consumption. And the difference among the frameworks is
significant for large batch size training cases.

4.4 Inference
We compared the performance of the frameworks of model infer-
ence on synthetic images. The images are created as random noise
with specific image dimensions and batch sizes. The inference step
only computes the forward pass of the DNN and its performance is
critical during deployment.

We measured the inference speed for single CPU and single GPU
cases, see Figure 3 For single CPU case, we force the script to use
only one thread to avoid exploiting the benefits of a multi-core
system.

We didn’t measure the performance of multi-GPU and multi-
node cases because the inference step can be naively parallelized.
And the speed is linearly proportional to the number of processors.

(1) The CPU case is insensitive to the number of batches due
to the lack of processing power. Overall CNTK has the best
inference performance, and Caffe2 and Tensorflow show
better performance than the rest two.

(2) The GPU case shows that larger batch sizes are preferred
as the GPU processor threads are efficient in processing
the forward pass. The performance of the frameworks in
the single GPU case are consistent with previous studies
[22]. CNTK stands out in two datasets when the optimally
large batch size is chosen. Tensorflow and MXNet also have
good performance in training. Interestingly when the large
batch size is chose, the performance of Caffe2 is worse than
expected. And Chainer has poor performance for the single
CPU/GPU tests.

(3) ImageNet images are larger than the Cifar-10 images, this
results in a lower inference speed in terms of the number
of images processed, because the network is wider in each
layer and more numerical calculations are needed.

4.5 Single GPU Training
The single GPU training casemeasures the total time for the forward
and the backward steps. Its performance is directly related to the
training time for a NN model. Also, it is the baseline for multi-node
training in the next section.

We first tested on synthetic Cifar-10 and ImageNet datasets with
different batch sizes, see Figure 4. For the small image size case,
Caffe2, CNTK, and Tensorflow perform well. The performance of
MXNet is problematic as discussed in Sec 4.3. And for the large
image size case, MXNet and CNTK are better. The result from Iman-
geNet case is consistent with the previous study [19]. This indicates
that even for a similar CNN model, i.e. ResNet, the performance
varies due to the image size difference.

Overall, CNTK has good performance, but for problems that the
end users face, a detailed performance analysis is needed to choose
the right framework.

4.6 Scalability
The scalability study compared the training speed of different frame-
works for single-GPU, multi-GPU, andmulti-node cases. The perfor-
mance of the single-GPU case in the previous section is the baseline
performance of different models. And we used synthetic Cifar-10
dataset preloaded before the training stage for all the experiments.
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Figure 3: Inference speed of ResNet-50 model using CPU/GPU for Cifar-10 and ImangeNet datasets.

Figure 4: Training speed of ResNet-50 model using single
GPU for Cifar-10 and ImangeNet datasets.

The distributed training typically uses either synchronous or
asynchronous stochastic gradient descent method to update the

weights of a NN model. The synchronous method requires collect-
ing the weight updates from all workers before proceeding to the
next iteration, which results in idle workers waiting for the updates
from other workers. In contrast, the asynchronous method updates
weights based on the update from the current worker’s result and
may end in a less optimal model[4]. In this work, we only focus on
the training speed.

4.6.1 Multi-GPU training. We first present the result frommulti-
GPU training on Cifar-10 using the ResNet-50 model with a batch
size of 1024, see Figure 5. Due to the benefits from high intra-node
communication speed and a limited number of GPUs, the synchro-
nous method is preferred in the multi-GPU case. Both CNTK and
MXNet showed good scalability up to 8 GPUs. The synchronous
method with Tensorflow requires a hand-coded weight averaging
function or a parameter-server setup12, which is different from
the approach for other frameworks and is thus excluded from this
comparison. The Chainer implementation does not include NVIDIA
Collective Communications Library (NCCL), which results in a sig-
nificant bottleneck in GPU communication. Thus its performance
decreases after two GPUs as the idle time increases in tandem with
the number of GPU. Caffe2 also shows good scalability but the
initial single GPU speed is slightly slower and requires further
improvement.

Overall, MXNet and CNTK are good for the multi-GPU model
training. And Chainer is not recommended for multi-GPU training
because it has not included the critical NCCL component.

4.6.2 Multi-node training. The multi-node training case is an
extension to the multi-GPU case that the DL model needs to com-
municate with the same model trained on other nodes. In this
experiment, each node contains only one GPU. Thus, the inter-
node communication becomes crucial. Also, AWS P2.xlarge case
has no reserved network bandwidth (about 10 Gbps). A better in-
ternet interface could increase the model training performance. We
encourage the readers to use our open-source code to measure the
performance on their infrastructure.

In the experiments, we tested ResNet-50 model on the synthetic
Cifar-10 dataset. For Caffe2, we used a Redis server to communicate
the weight updates. Caffe2 also requires that at the runtime, we
start the jobs on each node individually. For Chainer and CNTK,

12https://www.tensorflow.org/deploy/distributed

https://www.tensorflow.org/deploy/distributed
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Figure 5: Multi-GPU Performance with sync update

Figure 6: Performance of distributed training with 8 nodes
for ResNet-50 on Cifar-10 dataset.

MPI implementation is used and we submit the job once with cor-
responding resource requirements in the MPI arguments. MXNet
provides an additional script to initialize the training. And under
the hood, we choose the ssh driver to start the jobs on each node

Figure 7: Scalability in performance of distributed training
for ResNet-50 on Cifar-10 dataset with batch size 128. Grey
solid lines are the linear scalability limits.

via ssh. Tensorflow uses the parameter-server architecture to man-
age the communication of weight updates [1]. And it requires two
different tasks, worker and server, to be started separately. We used
one server and one worker on each node. Other configurations are
also possible but we do not explore them in this paper.

Similar to multi-GPU training, asynchronous and synchronous
updates are used in the multi-node model training. MXNet and
Tensorflow support both updates, however, we didn’t test the Ten-
sorflow version for synchronized update, because its
SyncReplicasOptimizer is not mature to use at the moment 13.
The MPI-based frameworks typically provide the synchronous up-
date method.

We first examine the impact of the batch size for 8 nodes (Fig-
ure 6). Because of slower communication among nodes (as opposed
to between GPUs on the same node), the overhead of the weight
update becomes critical. As expected, as the batch size becomes
larger, the ratio of overhead time and computation time become
smaller and the efficiency of the system is better [22].

Finally, we compared the scalability of the frameworks for 1, 2, 4,
and 8 node configurations. The experiments measured the training
speed for the ResNet-50 model on the Cifar-10 dataset with a batch

13See open issues with SyncReplicasOptimizer on Github.
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size of 128. The overall performance, in terms of images per second,
is reported in Figure 7.

For the asynchronous update, Tensorflow and MXNet showed
good scalability. Other frameworks do not support it in the current
form. This is due to the nature of asynchronous update that no
need to wait for the peer workers. However, we expect to see the
network bottleneck with larger scale experiments.

Compared to the asynchronous update, the synchronous update
runs have slightly worse scalability due to the bottleneck that the
update happens only when all workers have finished their computa-
tion for each iteration. Interestingly, in the multi-node case, MXNet
and Chainer show the best scalability among all frameworks. For
Chainer, as opposed to its performance in the multi-GPU version,
ChainerMN uses NCCL which significantly improves the scalability.
CNTK performance is sub-linear compared to the performance of
Chainer. However CNTK also provided non-commercial licensed
1-bit SGD, which accelerate the synchronization [17]. But we do
not include it in the analysis due to the limited usability. Caffe2
is also sub-linear, this is caused by the single-node setup of Redis
server. Further study of the configuration of Redis is needed to fully
exploit the computational efficiency of Caffe2.

Overall, Tensorflow and MXNet work well with the asynchro-
nous update, and Chainer and MXNet are good with the synchro-
nous update. And as expected, the asynchronous update has better
scalability. We did not explore the convergence and optimization
aspects for the different update methods.

4.7 Real Data performance
In this section, we examined the performance of different frame-
works with the real data, including speed and convergence. We set
up the same ResNet-50 model for the Cifar-10 dataset. We used the
full training dataset to train the model and reported both the train-
ing and testing accuracy at each epoch along with the time spent on
the training and inference steps. We used the same initialization14
and the SGD update with a learning rate of 0.1 and a batch size of
128. The dataset is preloaded in memory before the training. We
repeated the same training procedure 5 times and plotted all the
results in Figure 8.

In Figure 8, the first figure shows the training accuracy. Tensor-
flow has the highest convergence rate. Caffe2 and CNTK have a
larger variance in training accuracy compared to the other frame-
works. This is related to how the accuracy is calculated, for CNTK
and Tensorflow we used the full dataset, whereas for the others we
used the built-in function to report the performance.

The second figure shows the test accuracy. Tensorflow and Caffe2
have high accuracy which follow similar performance in training
accuracy. MXNet’s accuracy is worse than models trained with
others, although their training accuracy is comparable. Just as it
was the case in training accuracy, CNTK has larger variance in the
testing accuracy. Meanwhile, Caffe2, which had a larger variance
in training accuracy, has a stable test accuracy.

The third figure shows the training time spent on each epoch.
MXNET has the best performance persumablly due to the incom-
plete accuracy compuation. Caffe2 is also fast partially because it

14MXNet is slightly different as it uses the normal distribution without truncating for
the initialization

the data is already formatted in LMDB format. CNTK and Tensor-
flow are slower than the expected training speed, as the inference
speed is lower and we reported the accuracy of the full dataset.

Overall, we found that different frameworks have different re-
sults. Users need to be cautious when implementing and reusing
models for different frameworks and should check the performance
and accuracy metrics against their datasets.

Figure 8: Convergence of ResNet-50 on CIFAR-10 for DL
frameworks with single GPU.
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5 DISCUSSION AND CONCLUSION
In this work, we first compared the usability of different DL frame-
works. From the API perspective, Tensorflow provides the richest
library compared to all others. Chainer and MXNet also provide
large collections of DL functions to choose from. Caffe2 on the other
hand lags behind in terms of functionality and the documentation.

CNTK, Chainer, andMXNet are good choices to get started easily
in training and using distributed models. The installation process is
straightforward and high-level APIs are sufficient to build models
easily. More importantly, within those frameworks, it is simple to
convert existing code into the multi-GPU/-node version. Among
the three, CNTK has a large pre-built DNN library, which provides
an additional advantage.

In terms of speed, MXNet CNTK, and Tensorflow are overall
much better than the others. However, drawing a general conclusion
in terms of speed is difficult. We found that the results are sensitive
to different choices and problem sets, such as whether the network
is used for training or inference, the image and batch sizes, and if
the computing is on the CPU or the GPU. We provide the source
code used in this paper to the public to facilitate the community to
better measure the performance of the framework for their targeted
problems.

For distributed training, the asynchronous update approach
shows better scalability than the synchronous update. We found
that the NCCL library has a critical impact on the training perfor-
mance for Chainer. And that Chainer stands out for its scalability
for multi-node training with the synchronous update.

We also tested the performance of different frameworks on the
real Cifar-10 dataset. We found that Tensorflow converged to the
best training and test accuracy within 30 epochs, however, it is also
the slowest in terms of images/second. Tensorflow has reasonable
speed and convergence. For the rest of frameworks, we found that
their results have very large variance.

At the end, we found the CNTK framework to be overall the
framework of choice for a broad range of applications especially
with respect to usability and performance. However, users need to
be cautious to choose a framework for performance critical tasks.
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