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ABSTRACT
We investigate deep generative models that allow us to use training
data from one domain to build a model for another domain. We
consider domains to have similar structure (texts, images). We
propose the Variational Bi-domain Triplet Autoencoder (VBTA)
that learns a joint distribution of objects from different domains.
There are many cases when obtaining any supervision (e.g. paired
data) is difficult or ambiguous. For such cases we can seek a method
that is able to the information about data relation and structure
from the latent space. We extend the VBTAs objective function by
the relative constraints or triplets that are sampled from the shared
latent space across domains. In other words, we combine the deep
generative model with ametric learning ideas in order to improve the
final objective with the triplets information. We demonstrate the
performance of the VBTA model on different tasks: bi-directional
image generation and image-to-image translation. We also provide
the qualitative analysis. We show that VBTA model is comparable
with some of the existing generative models. We also show that it
outperformes some of these methods methods.

KEYWORDS
Generative Models, Variational Inference, Representation Learning,
Semi-Supervised Learning, Transfer Learning

1 INTRODUCTION
Learning distributed representations from data is one of the most
challenging task in many machine learning problems. Recent ad-
vances in probabilistic deep generative models allow us to specify
a model as joint probability distribution over the data and latent
variable consider the representations as samples from the posterior
distribution on latent variables given data.

Variational autoencoders (VAEs) [9] estimate the data using
variational inferencewith a few assumptions about data distribution
and approximate posterior distribution. They make it possible to
use latent variables as our learned representation.

Inspired byworks [6], [8], [19] we propose Variational Bi-domain
Triplet Autoencoder (VBTA) that learns a joint distribution of ob-
jects from different domains x and y having a similar structure (e.
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g. texts, images). VBTA allows using distributed representations
as samples from shared latent space z that captures characteristics
from both domains. In Section (3) similar to [12] we make assump-
tions about shared-latent space, in which the paired objects (images,
sentences) from different domains are close to each other. In Sec-
tion (4), similar to [19] and [20] we define the joint probability as
p(x, y;θ ) =

∫
z pθx (x|z)pθy (y|z)p(z)dz. But, unlike as in these works,

our domains x and y have similar structures and dimensions, and
we suppose approximate posterior distributions will be represented
in form of qϕ (z|x) and qϕ (z|y). The proposed model builds the joint
probability p(x, y) of domains x and y that are conditioned inde-
pendently on latent variable z (joint representation in the shared
latent space).

Like [6] we propose to use relative constraints or learning triplets
t to help our model catch domain characteristics and similarity
between domains better. We sample these triplets from the shared
latent space. Our joint probability takes the form of:

p(x, y, t) =
∫
z
pθx (x|z)pθy (y|z)p(ti, j,k |zi jk )p(z)dz.

We argue that the use of this implicit knowledge about the data
provides slight regularization of the proposed model and improve
the performance. We sample negative triplets’ examples by using
Jensen Shannon divergence as distance function between distribu-
tions during training and we suppose that on each training epoch
the information from the triplets regularizes our objective.

We use the approximate posterior in the form of qϕ (z|x) and
qϕ (z|y) because we want to solve the translation tasks — in images
and languages. If we have a mapping between domains f : x → y
and inverse mapping д : y → x, then f and д should be inverse of
each other. We want д(f (x)) ≈ x̂ and f (д(y)) ≈ ŷ, where x̂ and ŷ
are reconstructed input. At [26] these conditions are called cycle
consistency loss.

It is worth to be mentioning that either in image-to-image trans-
lation or in machine translation tasks paired (or parallel) data is
not always in sufficient quantities and obtaining such data can be
difficult and in some tasks, like artistic style transfer, quite ambigu-
ous. So we argue that the proposed model can translate between
domains with slight supervision provided by triplets.

In Section (5) we describe the results on several different datasets
and different tasks. The first dataset is MNIST [11], the second
dataset is CelebA [13]. We show that our method is comparable
with the previous methods on these datasets. We also show that it
outperformes some of these methods methods.

The main contributions of this paper are the following:
• We introduce the Variational Bi-domain Triplet Autoencoder
(VBTA) — new extension of variational autoencoder that
trains a joint distribution of objects in different domains.

https://doi.org/10.1145/nnnnnnn.nnnnnnn


KDD’18 Deep Learning Day, August 2018, London, UK R. Kuznetsova, O. Bakhteev

• We extend the VBTA objective with the learning triplets and
propose negative sampling method that samples from the
shared latent space purely unsupervised during training. We
show that model with the triplets information improves the
quality.

• We demonstrate the performance of the proposed model
on different tasks such as bi-directional image generation,
image-to-image translation, even on unpaired data and com-
parison with some previous methods. We also provide the
qualitative analysis.

2 RELATEDWORK
In this Section we consider some previous works that are close to
ours, both in theoretical and practical sense.

Deep Generative Models. Various Deep Generative Models were
proposed recently for many deep architectures. [9] introduced Vari-
ational Autoencoder, where it is assumed that the data is generated
using some latent continuous random variable z. In paper [8] ex-
tended the approach for semi-supervised settings. [2] presented a
Recurrent Latent Variable Model for Sequential Data. [10] presented
Deep Convolution Inverse Graphics Network and [4] proposed Gen-
erative Adversarial Nets.

Joint Models. Several works investigate joint models based on
variational autoencoders in the similar way but in different train-
ing settings and tasks. VCCA objective was presented by [21] for
multi-view representation learning. [19] introduced JMVAE model
to represent different modalities, that are independently condi-
tioned on joint representation. Also, the sampling process from
qϕ (z|x, y) and qϕ (z|x) was showed, when x and y were different
modalities. [20] presented an extension of joint VAE for multimodal
setting and introduced the TELBO objective. However, [19] and [20]
considered the task for modalities with different kind of structures
(e.g. images and text attributes for this images).

Triplet learning. Many works investigate the metric learning
approach, see [1], especially constructing the objective with the
learning triplets: T = (xi ,x j ,xk ), where xi should be more similar
to x j than to xk in the sense of some distance function. [6] pro-
posed the OPBN model with the VAEs objective extension with
triplets. [15] sampled the triplets that are close to each other by
Hamming distance. [23] sampled triplets from the training batches
using combination of some strategies. The triplet loss for face recog-
nition has been introduced by the paper [16]. They describe a new
approach for training face embeddings using online triplet mining
with different strategies.

Distributed representation learning. [14] demonstrated the po-
tential of distributed representations for crosslingual case. In works
[18, 25] bilingual autoencoder was demonstrated. Recent works
by [17, 22] described the Variational Autoencoder for distributed
representation learning, where variational distribution depends on
both domains (languages) qϕ (z|x, y).

Image-to-image translation. In our work we also consider image-
to-image translation problem, where the goal of which to learn a
mapping between an image from one domain to an image from

another. The most common approach for this task is GAN mod-
ification [5] using Cycle-Consistent Adversarial Networks [26],
DualGANs [24], Coupled GANs [12], Triangle GANs [3].

3 ASSUMPTIONS
Consider dataset (X,Y) = {x, y}Nn=1 consisting of N i.i.d. objects
from different domains. We assume that these objects are generated
independently by the random process using the same latent variable
z.

We make an assumption that for each pair (x,y) there exists
a shared latent space variable z, from which we can reconstruct
both x and y. Latent space variable z is built from the domain space
variables zx , zy according to equations:

z = E(zx ) = E (Ex (x)) ,

z = E(zy ) = E
(
Ey (y)

)
,

where zx and zy are produced from x and y accordingly:

zx = Ex (x),

zy = Ey (y).

We define a shared intermediate variable h, which is used to obtain
corresponding domain variables x̂, ŷ from y, x through z:

h = D(z) = D (E(Ex (x))) ,

ŷ = Dy (h) = Dy (D(E(Ex (x)))) = f (x) ≈ y,

x̂ = Dx (h) = Dx
(
D(E(Ey (x)))

)
= д(y) ≈ x.

As it was mentioned in paper [26], the necessary condition for
f and д to exist is the cycle-consistency constraint. That is, the
proposed assumptions requires the cycle-consistency assumption.

The following diagram on Figure 1 presents VBTA generative
process. Objects zi , zi and zk forme triplet.
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Figure 1: VBTA generative process
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4 METHODS
4.1 Variational Autoencoder
Let the objects from X = {x}Ni=1 be generated by condition on a
latent variable z ∼ p(z) = N(0, I): x ∼ pθ (x|z). The VAEs objective
is to maximize the marginal likelihood:

logpθ (x) ≥ −KL(qϕ (z|x) ∥ p(z)) + Eqϕ (z |x) logpθ (x|z), (1)

where qϕ (z|x) ∼ N(µϕ (x),σ
2
ϕ (x)) is approximate distribution of

posterior or encoder, pθ (x|z) ∼ N(µθ (z),σ
2
θ (z)) is decoder. Both

encoder and decoder are modelled by a neural network. To optimize
the variational parameters θ and ϕ the reparametrization trick is
used: z = µϕ (x)+σ

2
ϕ (x)⊙ϵ , where ϵ ∼ N(0, I). Therefore, gradients

estimation with respect to θ and ϕ is ∇θ,ϕEqϕ (z |x) logpθ (x|z) =
= EN(0,I)∇θ,ϕ logpθ (x|µϕ (x) + σ2

ϕ (x) ⊙ ϵ).

4.2 Learning Triplets
Based on the metric learning approach and similar to [6] we extend
our model by relative constraints or triplets:

T = {(zi , zj , zk ) : d(zi , zj ) < d(zi , zk )}.

We define the conditional triplet likelihood in the following form:

p(ti, j,k = True |i, j,k) =

=

∫
z
p(ti, j,k |zi , zj , zk )p(zi )p(zj )p(zk )dzidzjdzk , (2)

that was modelled by Bernoulli distribution over the states True
and False parametrized with the use of softmax-function.

p(ti, j,k |i, j,k) =
e−di, j

e−di, j + e−di,k
, (3)

with da,b =
∑M
m=1 d

m
a,b = −

∑M
m=1(JS(p(z

m
a ) ∥ p(zmb ))), where

z ∈ Rm ,
KL(p(zma ) ∥ p(zmb )) =

∫
z p(za ) log

p(zma )

p(zmb )
dz.

For d the following approximation is used:

da,b =
M∑

m=1
dma,b =

= −

M∑
m=1

[ 1
2
KL(p(zma ) ∥ p(zmb )) +

1
2
KL(p(zmb ) ∥ p(zma ))

]
. (4)

4.3 Variational Bi-domain Triplet Autoencoder
Consider the dataset (X,Y) = {x, y}Nn=1 consisting ofN i.i.d. objects
from different domains. We assume that these objects are generated
independently by the random process the use of the same latent
variable z. We consider the following formulation as bi-domain
generative model using triplet information:

p(x, y, t) =
∫
z

∏
n

pθx (x|z)pθy (y|z)p(ti, j,k |zi , zj , zk )p(z)dz (5)

Based on (3) we consider approximate posterior distributions to be
qϕx (z|x), qϕy (z|y) and qϕ (z|x, y) and estimate the lower bound of

the log-likelihood as follows:

LVBTA(x, y, t) = Eqϕx (z |x)
[
log

p(x, z)
qϕx (z|x)

]
+ Eqϕy (z |y)

[
log

p(y, z)
qϕy (z|y)

]
+

+ Eqϕx (z |x),qϕy (z |y)
[
log

p(t, z)
qϕ (z|t)

]
=

= −α
[
KL(qϕx(z |x)(z|x) ∥ pθx (z)) + KL(qϕy(z |y)(z|y) ∥ pθy (z))

]
+

+ β
[
Eqϕx (z |x)

[
logpθx (x|z)

]
+ Eqϕy (z |y)

[
logpθy (y|z)

] ]
+

+ γEqϕx (z |x),qϕy (z |y)
[
logp(t|z)

]
.

(6)
Here, both qϕx(z |x)(z|x) and qϕy(z |y)(z|y) are encoders, pθx (x|z)

and pθy (y|z) are decoders, modeled by the deep neural networks.
Similar to [12] our decoders and encoders use the common functions
E and D, see (3). For detailed networks architecture, applying to
each considering task see (5.3). The term p(t|z) is estimated by (4).

We apply the Stochastic Gradient Variational Bayes (SGVB) to (6)
and optimize the variational parameters θx, θy, ϕx and ϕy.

5 EXPERIMENTS
We present the results on an image-to-image translation task for
two datasets: MNIST [11] and CelebA [13]. For the MNIST dataset
we obtain the quantitative results and compared proposed method
with GANs [3] and JMVAE [19]. For the CelebA dataset we provid
an image-to-image translation considering CelebA as a set of two
image domains: faces of men and women. We inspect the results of
man-to-woman and woman-to-man translation.

5.1 Datasets
We used MNIST dataset for toy problem of image-to-image transla-
tion. Similar to [3] we considered a transposition of this dataset as a
second domain y. We used 50,000 as training set and the remaining
10,000 as a test set.

CelebA consists of 202,599 face images with 40 binary attributes.
In this work we considered this dataset as a union of two domains:
faces of men x and faces of women y. Similar to [19] we cropped
and normalized the images and resized them to 64x64.

5.2 Sampling methods
For all the experiments we selected the negative (the closest object
except paired) triplet examples from domain y with the minimal
Jensen-Shannon divergence with to the corresponding objects from
domain x:

zk = argmin
zi′ ∈Sb \(zi ,zj )

JS(zi , zi′ ),

where Sb ∈ S — current mini-batch, zi and zj — the paired objects
from different domains. That is, we wanted to choose an example
zk that is similar to zi according to the current model parameters.

For the MNIST dataset as a pair of similar images we used an
image and its transposition:

zi , zj = {qϕx(z |x)(z|x),qϕy(z |y)(z|y) : y = xT}.

Since we did not have any paired men and women in CelebA
dataset, we considered that the object y (women) is similar to object
x (men) if they had the largest matching of their attributes.
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5.3 Model Architecture
For the MNIST dataset we used one-layer network of 512 hidden
units with ReLU for decoder D and encoders Ex ,Ey . For the mod-
eling shared encoder E and decoder Dx ,Dy we used the linear
mappings. The shared latent space dimension was set to 64.

For the classification evaluation we set pθx (x|z) and pθy (y|z) to
be Gaussian distribution. For the comparison to JMVAE model we
set pθx (x|z) and pθy (y|z) to be Bernoulli. We set model of JMVAE
to the same configuration.

For CelebAwe used encoders Ex ,Ey with two convolution layers
and a flattened layer with ReLU. For the shared encoder E and de-
coder Dx ,Dy we used linear mapping into 64 hidden units. For the
decoder D we used a network with one dense layer with 8192 units
and a deconvolution layer. We considered pθx (x|z) and pθy (y|z) as
a Gaussian distribution.

We used the Adam [7] optimization algorithm with a learning
rate of 10−3 for the MNIST dataset and 10−4 for CelebA dataset. All
the models were trained for 100 epochs with batch size set of 50.

6 RESULTS
6.1 Image-to-image translation for MNIST

dataset
Following [3]we firstly evaluated our approach onMNIST-transpose,
where the two image domains x and y are the MNIST images and
their corresponding transposed ones. Similar to [3] we used the
classifier that trained on MNIST images as a ground-truth evaluator.
For all the transposed images we encoded them via our model en-
coder E ◦Ey and decoded via decoder Dx ◦D. Then we sent them to
the classifier. The results of the classification are shown in Table 1.
We showed that the triplet information improves the quality signif-
icantly, see the last row, n = 0 and n = 10, where n is the number
of objects used for triplets sampling. As we can see, our approach
gives classification results comparable to the state-of-the-art GAN
model results. The intermediate results of the proposed method are
illustrated in Figure 2. Figure 3 shows PCA vizualization on MNIST
dataset. The right Figure shows the projection of the translated
version of MNIST-transpose projected using the same PCA model.
As we can see, the translation function f (x) preserves the latent
information of the dataset.

Table 1: Classification accuracy (%) on the MNIST-transpose
dataset. The DiscoGAN, Triple GAN and ∆-GAN results are
taken from [3]

Model n = 0 n = 10 n = 100 n = 1000 All
DiscoGAN - - - - 15.00

- - - - ±0.20
Triple GAN - - 63.79 84.93 86.70

- - ±0.85 ±1.63 ±1.52
∆-GAN - - 83.20 88.98 93.34

- - ±1.88 ±1.50 ±1.46
Proposed 17.07 59.09 90.74 90.83 90.78

±3.59 ±17.78 ±0.26 ±0.34 ±0.31

As we can see, the performance of both our methods is compa-
rable when the number of used labels is large. However, the model

Figure 2: Intermediate results of training model for 10
epochs. As we can see, the digit “2” is purely reconstructed
and similar to “3”. Therefore the corresponding negative
sample from domain y is chosen to distinguish them.

Figure 3: PCA projection of the dataset y (left) and the trans-
lation of Y, i.e. д(y) (right). In both cases the PCAmodel was
optimized only using the dataset y.

with shared decoder gives us good quality with a few examples.
We argue that this is connected with the simplicity of translation
between MNIST and its transposed version.

We further evaluated the marginal log-likelihood of our model
on binarized versions of MNIST and MNIST-transpose and com-
pared it with two models: variational autoencoder and JMVAE. The
results are listed in Table 2. The results show that the marginal
log-likelihood of our model is slightly better than the likelihood of
the variational autoencoder, because the latent space was shared
among two domains.

6.2 Qualitative results for CelebA dataset
In this Section we confirm that our method can generate images and
translate them between two domains. Figure 4 shows face images
from datasets and their translation into different domains.



Table 2: Marginal log-likelihood for MNIST as logp(x) and
MNIST-transpose datasets as logp(y). The JVMAE results are
taken from [19]. For VAE results we tested standart VAE (1).

Model < loдp(x) < loдp(y)
VAE -81.13 -81.01
JVMAE -85.35 -85.44
Proposed −80.92 −80.91

Figure 4: Results of image-to-image translation for CelebA
dataset. The first row corresponds to the original images
that were considered as similar because of high amount of
matching attrbutes. The second row shows the reconstruc-
tion of the images. The third row illustrates the image trans-
lation from domain x into domain y and from y into x.

Figure 5 shows faces generated from Gaussian distribution. We
found that our algorithm works well enought and can reproduce
similar faces for both domains from one sample in latent space.

Figure 5: Results of image generation from the common
shared space. Each column corresponds to the faces gener-
ated from one sample of z. The latent variable zwas sampled
from Gaussian distribution: z ∼ N(0, I).

7 CONCLUSION AND FUTUREWORK
In this paper we proposed the Variational Bi-domain Triplet Au-
toencoder (VBTA) that learns a joint distribution of objects from
different domains. We consider that domains have similar structure
(texts, images). The proposed model built the joint probability of
domains, that are conditioned independently on a latent variable.
We extended the VBTAs objective function by the relative con-
straints or triplets that sampled from the shared latent space across
domains. We did that extension to deal with the task when there is
no possibility to obtain labeled data.

We demonstrated the performance of the VBTA model on differ-
ent tasks: bi-directional image generation, image-to-image trans-
lation, even on unpaired data. We also provided the qualitative
analysis. We showed that VBTA model is comparable and outper-
forms some of the existing generative models.

In future work we would like to provide experiments on text
data and extend the model on more than one domain.
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