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ABSTRACT
We present a convolutional-recurrent neural network architecture
with long short-term memory for real-time processing and clas-
sification of digital sensor data. The network implicitly performs
typical signal processing tasks such as filtering and peak detection,
and learns time-resolved embeddings of the input signal.

We use a prototype multi-sensor wearable device to collect over
180 h of photoplethysmography (PPG) data sampled at 20Hz, of
which 36 h are during atrial fibrillation (AFib).

We use end-to-end learning to achieve state-of-the-art results in
detecting AFib from raw PPG data. For classification labels output
every 0.8 s, we demonstrate an area under ROC curve of 0.9999,
with false positive and false negative rates both below 2 × 10−3.

This constitutes a significant improvement on previous results
utilising domain-specific feature engineering, such as heart rate ex-
traction, and brings large-scale atrial fibrillation screenings within
imminent reach.

CCS CONCEPTS
• Computing methodologies → Neural networks; • Applied
computing → Consumer health; Health informatics;
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1 INTRODUCTION
1.1 Atrial fibrillation
Atrial fibrillation (AFib) is a condition characterised by an irregu-
lar and often rapid heartbeat due to abnormalities in the heart’s
electrical activity. It affects between 2–3% of the population [4], yet
as many as 50% of cases remain undiagnosed for 5+ years [50]. It
causes a range of complications, including stroke [42], yet can be
managed successfully if diagnosed early [25]. Despite significant
interest, AFib detection is complicated by several factors: First, it
typically relies on an electrocardiogram (ECG) recorded in a hos-
pital setting. Second, due to intermittent nature of the condition,
patients may not exhibit any symptoms at the time of the recording,
and may require prolonged monitoring. Finally, diagnosis is made
by trained cardiologists, and screening efforts are thus difficult to
scale to the larger population.

1.2 Wearable devices for AFib diagnostics
Photoplethysmography (PPG) has been proposed as a lower-cost
alternative to ECG for the purpose of AFib detection. PPG heart rate
monitors have already foundwide-spread use in wearable consumer
devices such as fitness trackers and smart watches. Unlike ECG,
PPG measures changes in the intensity of light reflected by the
user’s skin due to varying volume and oxygenation of blood in the
capillaries [2]. In a recent study [44], it was shown that heart rate
readings from an Apple Watch could be useful in detecting AFib.

In the present study, we develop a neural-network-based algo-
rithm to detect AFib from raw PPG signal. The sensor signal is
provided by a wrist-worn prototype fitness tracker device, and sam-
pled continuously at 20Hz. By training a neural network to perform
all stages of feature extraction and classification, we achieve per-
formance far superior to what is possible from heart rate features
alone.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Table 1: Train and test data.

source subjects rhythm duration [h]

train UCSF∗ 29 AFib‡ 30
NSR§ 15

internal† 13 NSR§ 100
test UCSF∗ 7 AFib‡ 6

NSR§ 3
internal† 4 NSR§ 25

∗ patients undergoing cardioversion, awake
† volunteers with no known arrhythmias, asleep
‡ atrial fibrillation
§ normal sinus rhythm

2 DATA
The intermittent nature of AFib presents significant challenges to
data collection. We collaborate with the University of California,
San Francisco (UCSF) Division of Cardiology to record a range of
signals as patients undergo cardioversion - a medical procedure that
restores normal sinus rhythm (NSR) in patients with AFib through
electric shocks. The procedure is performed under conscious se-
dation, limiting both the patient’s discomfort and movement. Par-
ticipants are of a diverse demographic, covering a range of ages
(37–85 years), skin types (I–V on the Fitzpatrick scale [13]), races
(77% white), and both genders (71% male). Cardiologist-reviewed
ECGs are used to infer the ground truth labels before and after
cardioversion. We exclude a minority of regions labelled by experts
as other arrhythmias, and exclude one patient from the test set
due to insufficient ECG data during recurring AFib episodes post-
cardioversion. In addition, we record data from volunteers with no
known arrhythmias during sleep outside the hospital setting. We
assume that these internal recordings do not contain episodes of
atrial fibrillation. We do not exclude recordings or parts thereof
based on PPG signal quality, and allow for possibility of mislabelled
regions in the training data due to insufficient ECG coverage. Table
1 summarizes the data used for algorithm development and testing.

Results presented here are based on approximately 180 h of data,
of which 36 h are AFib. This is equivalent to approximately 107 raw
samples, or 106 individual heartbeats. Using raw data maximises
the information available for classification, and opens up numerous
possibilities for generating augmented data, as discussed in Section
3.3.

3 CLASSIFYING RAW PPG SIGNALS
The bottom panel in Fig. 2 shows a typical PPG signal as the patient
transitions from AFib to a normal sinus rhythm. Changes in the
amplitude and periodicity of the signal are apparent, but presen-
tation varies over time and between patients. By using a suitable
heartbeat segmentation algorithm, it is possible to extract a range
of features describing variability in periods and amplitudes, as well
as morphology, of individual heartbeats. Insets of Fig. 2 (top panel)
illustrate the value of this approach, yet choosing relevant features
is a non-trivial task. Real-world issues such as signal discontinuities
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Figure 1: A convolutional-recurrent architecture for classifi-
cation of raw time-series data. While the receptive field of
each neuron in the convolutional (Conv) layers is well de-
fined, the recurrent long short-term memory (LSTM) layer
can learn variable-length correlations.

and noise from a range of sources further complicate the classifi-
cation problem. It is common practice to pre-process the signal,
exclude noisy regions using a separate criterion, or introduce an ad-
ditional label for such regions. Importantly, the information content
in noisy signals per unit time may vary, which must be reflected in
the classifier output.

3.1 Related work
A range of timeseries classification techniques have been proposed
[47], with deep learning gaining increasing traction [3]. Recent
work on classifying PPG signals can be broadly divided into time-
domain heart rate approaches relying on heartbeat segmentation
[33], and frequency-domain approaches generating features through
Fourier or wavelet transforms [40]. Classification of ECG signals
has received significant attention, with deep learning approaches
employed almost exclusively in recent work [36, 39, 48, 49].

Our work on classifying medical sensor signals benefits from
the many advances made using convolutional and recurrent neural
networks in the domains of audio labelling and synthesis [20, 38, 46],
and image recognition [21, 28, 29, 37, 41].

3.2 Convolutional-recurrent architecture
To overcome the issues outlined above, we propose an end-to-end
modelmapping the inputs to a sequence of calibrated, instantaneous
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Figure 2: Real-time labelling ofAFib vsNSR from rawPPG signal during cardioversion. Bottom to top: PPG signal; time-aligned
activations in intermediate layers of the unrolled network; output probability p (see text). Insets show typical variations in
heart rates (BPM), amplitudes, and PPG morphology for individual heartbeats during (a) AFib and (b) NSR. Details on visual-
izing individual activations are given in Appendix A.

probabilities. The model is based on the convolutional-recurrent
neural network architecture shown schematically in Fig. 1.

Our input is a sequence of samples xti , recorded at times ti . The
corresponding sampling frequency is fx = (ti+1 − ti)−1. We seek
to predict the sequence of probabilities

pτj = P(AFib atτj |xti ≤τj )

Notice that our approach allows for the output p to depend on all
previous values of xti . Convolutional layers [30] with ReLU non-
linearities [17, 26] extract multiple new features each layer, based on
a receptive field of fixed length. 1 Convolution kernels can be seen
as digital signal filters, and remove the need for hand-engineered
signal processing operations. Max-pooling [23] is commonly used
in deep convolutional neural networks, and in the context of signal

1the receptive field could be expanded significantly, e.g. using dilated convolutions as
in [46]
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processing it can be interpreted as a down-sampling operation.2
A variable receptive field of each output is achieved by applying a
long short-term memory (LSTM) recurrent layer [15, 22],3 followed
by a single dense layer with sigmoid activation for the final output
p.

The convolutional-recurrent architecture has further practical
advantages: the sequence lengths used for training or prediction
are flexible, and a real-time implementation is possible on a range
of platforms.

The output frequency fp = (τj+1 − τj )
−1 is constrained to the

divisors of fx . The overall down-sampling ratio we use is fp/fs =
1/16, i.e. a new label is output every 0.8 s for an input signal sampled
at 20Hz.

Our implementation uses proven open-source libraries [1, 10, 35].
The model hyperparameters are chosen through cross-validation. 4
We find that our model is robust over a wide range of hyperparam-
eters, with overfitting largely controlled by data augmentation at
training time, as described in the following section.

3.3 Model training
We seek tominimize the binary cross-entropy loss function, summed
over all outputs. The loss function is adjusted for class imbalance
[19].

Ourmodel contains ca. 10000 trainable parameters, andwe follow
best practices to improve convergence, reduce training time, and
control over-fitting. These include weights initialization [16, 43],
batch normalization between layers [24], dropout in the LSTM layer
[14], and the choice of optimizer [27].

We train our network on mini-batches of fixed-length subse-
quences of the training data. The LSTM state is initialized at random
for each example, and example length is chosen to allow the learn-
ing of long-range dependencies. Each epoch, we perform random
augmentation of the training batches. Data augmentation has be-
come a standard technique for training neural networks for image
classification [9], audio tasks [11], and other timeseries applica-
tions [18, 45]. Using raw data allows us to identify domain-specific
heuristics for data augmentation, and thus account for e.g. varia-
tions in user skin tone and varying light conditions. We randomly
offset selected examples within the raw training signals (random
cropping), and apply scaling, additive shifts and random Gaussian
noise with random amplitudes per example. Random augmentation
proves crucial to obtaining a model with superior performance on
real-world signals.

Tomonitor convergence, we use a validation set of non-overlapping,
unaugmented subsequences, reducing the learning rate every time
the validation loss stops decreasing, as seen in Figure 3.

We generally achieve better performance on unaltered validation
data compared to randomly augmented training batches. Similarly,
we find that the performance of the trained model on the test set is
unaffected by the presence of noisy recordings in the training set,
and is robust to the presence of some mislabelled training examples.

2another way to down-sample the signal is through strided convolutions [12]
3in theory, LSTM state will depend on all previous xti , though practical limitations
exist [6]
4like the train-test split, all cross-validation splits are by subject to obtain an unbiased
estimate of model performance
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Figure 3: Learning curves (bottom) and learning rate anneal-
ing (top) with random augmentation
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Figure 4: ROC of the trained model. Highlighted point cor-
responds to a probability threshold of 0.5.

This is especially important given the limitations of our dataset
explained in Section 2.

4 RESULTS
4.1 Classifier performance
We evaluate performance of our model on the test set of recordings,
as summarised in Table 1. We use raw sequence labels at 1.25Hz.
Figure 4 shows the receiver operating characteristic (ROC) curve
for our probability predictions, for both train and test data. On the
test set, we achieve AFib vs NSR classification with a specificity
and sensitivity of 0.998 and 0.999, respectively, at a probability
threshold of 0.5. This corresponds to a false positive rate of 2× 10−3
and a false negative rate of 1 × 10−3. The probability output is well
calibrated, with a Brier score [7] of 0.002. As noted above, we have
chosen to not exclude recordings with low signal quality, nor have
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we excluded a recording with suspected heart rhythm changes
inbetween ECG spot checks from the training data - the ability
to train a highly accurate classifier despite the likely presence of
mis-labelled data is important given the nature of physiological
signals.

In large-scale screening applications, we expect a low false posi-
tive rate to be of key importance: not only is the fraction of individu-
als with AFib small, they are expected to exhibit AFib for a fraction
of the time, with episodes varying in duration and frequency. 5
Considering the recordings from (presumed) healthy individuals
during sleep only, we observe a false positive rate of 0.0016 at the
same probability threshold.

4.2 Learned signal filtering
While the meaning of individual network weights is difficult to
interpret, we can identify one specific task our network learns
through training: that of signal filtering. The first convolutional
layer can be seen as a bank of finite impulse response (FIR) filters,
and we find that they adapt to perform high-pass filtering, with DC
attenuations ranging from −37 dB to −64 dB. Thus, our approach
removes the need for signal pre-processing, and the attenuation is
consistent with the range of DC amplitudes seen in training.

4.3 Neuron function
Visualisation and interpretation of the function of individual neu-
rons in convolutional [34] and recurrent [8] neural networks is an
area of active research. Figure 2 shows time-resolved activations
after two intermediate max-pooling layers, as well as the LSTM
hidden state, time-aligned with the input signal. We can see how a
number of neurons appear to specialize in tasks such as detecting
peaks in layer maxpool_1, tracking persistent heart rhythm in layer
maxpool_2, and finally encoding presence of AFib and/or NSR in
the LSTM layer. It is interesting to note the time offset between
transitions in individual LSTM hidden state values, and also the
robust behaviour in the presence of input signal discontinuities and
variable signal-to-noise ratios.

4.4 Heart rhythm embeddings
The hidden state of the LSTM layer can be interpreted as a time-
dependent latent-space embedding of the underlying heart rhythm.
We visualize 2D projections of these vectors for a range of patients
in Figure 5. While our network learns a global decision boundary
(shown for p = 0.5), we can see that the heart rhythm embeddings
for both AFib and NSR vary between patients. We propose that
standard unsupervised clustering techniques [32], applied to heart
rhythm embeddings produced by our network, can further improve
classification accuracy. More importantly, we envision being able to
detect heart rhythm anomalies in individual subjects as outliers in
the latent space, and extending our approach to other heart rhythm
anomalies in the future.

5the total fraction of time spent in AFib by a given individual is known as the AFib
burden; we are not aware of a study describing the distribution of burdens nor episode
lengths
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Figure 5: Heart rhythm embeddings, shown as 2D projec-
tions of LSTM hidden state vectors. Each point corresponds
to one temporal step in the output sequence. For visual clar-
ity, one in every 15 time steps is shown. Marker shape indi-
cates the ground truth label; colours and letters correspond
to unique patients. Projections were obtained as described
in Appendix B.

5 CONCLUSIONS
In this article, we have demonstrated how applying best practices
from domains such as image classification and natural language
processing to the hitherto under-explored application area of real-
time sensor data classification yields state-of-the-art results in PPG-
based diagnostics of atrial fibrillation. We show that digital signal
pre-processing can be learned by a suitably chosen neural network
architecture, in a way that easily generalises to a multi-sensor,
multi-channel setting. By interpreting intermediate outputs of a
pre-trained neural network as latent-space embeddings of the phys-
iological signal, we can further personalize diagnostics through
unsupervised learning.

One aspect that could affect real-world performance of the model
is the minimum duration of an isolated AFib episode that we are
able to detect. Our experiments with synthetic data 6 show that

6obtained by splicing regions with different heart rhythms
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minimum to be between 20–200 s, with a strong variation between
patients, and dependent on signal-to-noise ratios. We believe that
using synthetic data at training time may improve this further -
concurrently, our ongoing data collection and labelling efforts focus
on capturing a variety of real-world episodes.

While we have made every effort to train a robust and generaliz-
able model, we have only accessed performance on data collected
either in a hospital setting or during sleep. It remains to be seen
how other factors such as motion and differing demographics affect
the results. At the same time, we are confident that our approach
will be applicable to new and larger datasets.

Three main issues have thus far precluded large-scale preventive
diagnostics of AFib: the cost and availability of ECG monitoring
devices, the episodic nature of the condition, and the need for
expert review. By combining low-cost wearable sensors with deep
learning algorithms, we pave the way to real time detection of atrial
fibrillation in millions of users.
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A VISUALISING NEURONS
In Figure 2, we show activations of intermediate-layer neurons over
time. We aim to show groups of neurons that learn similar func-
tions. ReLU, and therefore max-pooling activations, are in the range
[0,∞), while the hidden state values of an LSTM are in the range
[−1, 1]. To better visualise the function of our network, we order
individual channels i in each layer l by similarity of the activation
timeseries a(l )it , where t denotes the time index. We use the optimal
leaf ordering [5] obtained through hierarchical agglomerative clus-
tering [31] with a suitable pairwise distance function. We find that
the distance metric d(l )i j = 1 −

���corr (a(l )it ,a(l )jt )���, computed over all
times, yields good results. For the LSTM state, we invert the sign for
channels with predominantly negative values (this is equivalent to
flipping the sign of some weights to yield an equivalent network).

B VISUALISING VECTOR EMBEDDINGS
In Figure 5, we visualise multi-dimensional vector embeddings by
projecting them onto 2D. This is done in a way that preserves the
decision boundary, as defined by x · w + b = 0 for embeddings
x ∈ Rn , and parameters of the simple linear classifier w, b ∈ Rn .
The corresponding logistic regression decision function is given
by p(x) = σ (x ·w + b), with sigmoid activation σ (a) = (1 + e−a )−1.
w and b are learned by the output layer of the network during
training.

To obtain 2D projections y = (y0,y1), we writey0 = x · ŵ+ b̂ and
y1 = PCA0 (x − ŵy0). We use the notation ŵ = w/|w|, b̂ = b/|w|

for normalized vectors, and PCAn (v) denotes the nth principal
component of v.
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