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ABSTRACT
Metric learning aims at automatically learning a metric from pair or
triplet based constraints in data, and it can be potentially beneficial
whenever the notion of metric between instances plays a nontrivial
role. In Mahalanobis distance metric learning, distance matrix M
is in symmetric positive semi-definite cone, and in order to avoid
overfitting and to learn a better Mahalanobis distance from weakly
supervised constraints, the low-rank regularization has been often
imposed on matrixM to learn the correlations between features and
samples. As the approximations of the rank minimization function,
the trace norm and Fantope have been utilized to regularize the met-
ric learning objectives and achieve good performance. However,
these low-rank regularization models are either not tight enough to
approximate rank minimization or time-consuming to tune an opti-
mal rank. In this paper, we introduce a novel metric learning model
using the capped trace norm based regularization, which uses a sin-
gular value threshold to constraint the metric matrixM as low-rank
explicitly such that the rank of matrix M is stable when the large
singular values vary. The capped trace norm regularization can also
be viewed as the adaptive Fantope regularization. We minimize
singular values which are less than threshold value and the rank of
M is not necessary to be k, thus our method is more stable and
applicable in practice when we do not know the optimal rank of
matrix M . We derive an efficient optimization algorithm to solve
the proposed new model and the algorithm convergence proof is
also provided in this paper. We evaluate our method on a variety of
challenging benchmarks, such as LFW and Pubfig datasets. Face
verification experiments are performed and results show that our
method consistently outperforms the state-of-the-art metric learn-
ing algorithms.
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Figure 1: An illustration of metric learning on Outdoor Scene
Recognition (OSR) dataset.
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1. INTRODUCTION
Metric learning has shown promising results with learning the

proper Mahalanobis distance for many data mining tasks.The goal
of metric learning is to learn an optimal linear or nonlinear projec-
tion for original high-dimension features from supervised or weakly
supervised constraints, and there have been a lot of works in this
field [28, 1, 26, 9, 27, 24]. Metric learning has been widely used
in applications where metric between samples plays an important
role, such as image classification, face verification and recognition
in computer vision [6, 17, 13, 14], learning to rank in information
retrieval [16, 15], bioinformatics [25], etc.

In image mining and retrieval, there are many metric learning
algorithms learning an optimal Mahalanobis distance from weakly
supervised constraints between images. The main constraint paradigms
include: pair constraint [1], triplet constraint [27], and quadruplet
constraint [13]. To avoid overfitting and learn correlation among
samples, many regularizations were proposed to impose on the pro-
jection matrix. Among these regularizations, the low-rank regu-
larization is proved to be effective and efficient to learn potential
correlations from training data, e.g. trace norm and Fantope regu-
larization[14].

In this paper, we propose a novel metric learning model using the
capped trace norm as the low-rank regularization for Mahalanobis



distance metric learning. Different from trace norm which mini-
mizes sum of all singular values, or Fantope regularization which
minimizes sum of k smallest singular values, the capped trace norm
penalizes the singular values that are less than a threshold adap-
tively learned in the optimization. As a result, the non-relevant
information (associated to smallest singular values) can be filtered
out, such that the metric learning model is more robust. Meanwhile,
we only need input an approximate rank value, thus our regulariza-
tion term is tighter than trace norm and more stable and applica-
ble in practical problems. We also derive an efficient optimiza-
tion algorithm with rigorous convergence analysis. In the exper-
iments, we impose our novel low-rank regularization on different
metric learning formulations and compare with other the state-of-
the-art metric learning methods. Experimental results show that our
method outperforms other related methods on benchmark datasets.

2. RELATED WORK
The goal of metric learning is to learn an adaptive distance, such

as Mahalanobis distance dM (xi, xj) =
√

(xi − xj)TM(xi − xj),
for the problem of interest using the information brought by train-
ing examples. Most of metric learning methods use weakly-supervised
constraints. There are three mainly paradigms of constraints, such
as pairwise, triplet, or quadruplet constraint.

The pairwise constraint contains information whether two ob-
jects in a pair are similar or dissimilar, sometimes positive pairs or
negative pairs. Pairwise constraint is represented by D and S as:

S = {(xi, xj) : xiand xjare similar}
D = {(xi, xj) : xiand xjare dissimilar} . (1)

The information-Theoretic Metric Learning (ITML) is one of
many methods using pairwise constraint training examples in met-
ric learning field [28, 1, 11, 5], and it is formulated as follows:

min
M∈Sd+

γ
∑
i,j

ξij +Dld(M,M0)

s.t. d2M (xi, xj) ≤ u+ ξij , ∀(xi, xj) ∈ S
d2M (xi, xj) ≥ l − ξij , ∀(xi, xj) ∈ D , (2)

where u and l are upper bound and lower bound for similar sam-
ples and dissimilar samples respectively. ξij is a safety margin
distance for each pair and Dld(M,M0) is LogDet divergence and
Dld(M,M0) = Tr(MM−1

0 )− logdet(MM−1
0 )−d where d is the

dimension of input space and M0 is a positive definite matrix.
Triplet constraint is also widely used in metric learning, and it is

denoted byR as:

R = {(xi, xj , xk) : xi is more similar to xj than to xk} . (3)

Large Margin Nearest Neighbor (LMNN) [27] is one of the most
widely used metric learning methods which uses triplet constraint
on training examples. The LMNN model is to solve:

min
M∈Sd+

(1− µ)
∑

(xi,xj)∈S

d2M (xi, xj) + µ
∑

(i,j,k)∈R

ξijk (4)

s.t. d2M (xi, xk)− d2M (xi, xj) ≥ 1− ξijk∀(xi, xj , xk) ∈ R ,

where µ ∈ [0, 1] controls relative weight between two terms, and

S = {(xi, xj) : yi = yj and xj belongs to the k-neighborhood of xi}
R = {(xi, xj , xk) : (xi, xj) ∈ S, yi 6= yk} . (5)

It is proved to be very effective to learn Mahalanobis distance in
practice, and is extended to many methods for different applica-
tions [20, 10, 9]. However, LMNN is prone to be overfitting some-

times, and it is also sensitive to Euclidean distance when it com-
putes neighbors of each sample at the beginning.

In [13], a novel quadruplet constraint was proposed to model
similarity from complex semantic label relations, for example, the
degree of presence of smile, from least smiling to most smiling.
The scheme of quadruplet constraint is as follows:

A = {(xi, xj , xk, xl) : d2M (xk, xl) ≥ d2M (xi, xj) + δ} , (6)

where δ is a soft margin. Quadruplet is able to encompass pair
and triplet constraint. Pairwise constraint can be represented as
(xi, xi, xi, xj), and set δ = l, so d2M (xi, xj) ≥ l and xi, xj are from
dissimilar set; or (xi, xj , xi, xi), set δ = −u, then d2M (xi, xj) ≤ u,
(xi, xj) are from similar set. Similarly, triplet constraint can also
be represented as (xi, xj , xi, xk).

To solve the problem of overfitting, many regularizations over
matrix M were proposed in the past. In [22], they impose squared
Frobenius norm onM , and form an SVM like structure to do metric
learning:

min
W

||M ||2F + C
∑
i,j,k

ξijk (7)

s.t. d2M (xi, xk)− d2M (xi, xj) ≥ 1− ξijk, ∀(xi, xj , xk) ∈ R ,

where M = ATWA, matrix A is fixed and known, and the diago-
nal matrix W is learned.

There are some works imposing low-rank structure on M . The
most direct way is let M = LTL, where M ∈ Rd×d, L ∈ Rk×d
and k is smaller than d. So, M is a matrix of rank k.

In [16], they proposed a robust structure metric learning method,
and used nuclear norm as convex approximation of low-rank regu-
larization, and it can be expressed as a convex optimization prob-
lem:

min
M∈Sd+

Tr(M) +
C

n

∑
q∈X

ξq

s.t. ∀q ∈ X , y ∈ Y :

〈M,φ(q, yq)− φ(q, y)〉F ≥ ∆(yq, y)− ξq , (8)

where X ⊂ Rd is the training set of n points, Y is the set of all
permutations over X , C > 0 is a slack trade-off parameter, φ is
a feature encoding of an input-output pair, and ∆(yq, y) is the de-
signed margin.

In [14], a tighter rank minimization approximation, Fantope reg-
ularization, was proposed and imposed onM , and holds an explicit

control over rank ofM . The formulation is Reg(M) =
k∑
i=1

σi(M),

where σi(M) are k smallest singular values.

3. METRIC LEARNING USING CAPPED
TRACE NORM

In this paper, we are going to introduce a novel low-rank regu-
larization based metric learning method, so that we can avoid the
problem of overfitting and learn an effective structure from limited
training data. As we mentioned in last section, there have been al-
ready many different types of regularization over M ∈ Sd+ in met-
ric learning literature. The Frobenius norm regularization proposed
by [22] can avoid overfitting, however, the definition of M in this
paper restricts the generation of M and it cannot learn correlation
between features.

In weakly supervised metric learning, the algorithm does not
have access to the labels of training data, and it is only provided
with side information which is in the form of pair or triplet con-
straints. In this case, the low-rank regularization seems to be an



effective way to learn correlations between data. Trace norm (also
called as nuclear norm) has been used as the convex relaxation of
the rank minimization, however, there still is a gap between trace
norm and rank minimization. Because trace norm is the sum of
all singular values, if one of the large singular values changes, the
trace norm will also change correspondingly, but the rank of the
original matrix keeps constant.

Setting M = LTL or imposing Fantope regularization are both
explicit way to control the rank of matrix M . The performance
could be good if we can find a good fitted rank. However, in prac-
tice, we do not know the rank of a matrix accurately, and we have
to tune this parameter very carefully, because a small deviation of
parameter k from optimal value may have large influence on the
final performance. It is a tedious process to select the best k from a
large range.

In this paper, we will use the capped trace norm as low-rank reg-
ularization [29, 30]. It can be represented as Reg(M) =

∑
i

min{σi(M), ε},

where ε is a threshold value. In this regularization, we only min-
imize the singular values that are smaller than ε, and we ignore
other large singular values. Thus, when large singular values vary,
our regularization behaves the same as low-rank regularization, and
keeps constant too. In practical problems, it is difficult to estimate
the rank of matrix M , but the ε value in capped trace norm can be
easily decided [4, 8].

Because quadruplet constraint can encompass pair and triplet
constraints, in this paper, we use quadruplet constraint to form a
new robust metric learning model as:

min
M∈Sd+

∑
q∈A

[
ξq +

〈
M,xijx

T
ij − xklx

T
kl

〉]
+

+
γ

2

∑
i

min{σi(M), ε} . (9)

We will also use this model in the optimization and convergence
analysis sections, but the conclusions are the same when we use
pair or triplet constraint.

3.1 Optimization Algorithm
Objective function (9) is non-smooth and non-convex, and it is

hard to optimize. In this section, at first, we will use re-weighted
method to transform the original objective function to a convex sub-
problem, then proximal gradient method is applied to solve this
new subproblem. In next section, we will prove that our objective
function will converge, and the values of original objective function
(9) are non-increasing after each step, and a local optimum value is
to be obtained.

According to the re-weighted algorithm described in [19, 18], let
M = UΣV T and singular value σi are in ascending order. We
define:

D =
1

2

k∑
i=1

σ−1
i uiu

T
i . (10)

Therefore, original problem (9) can be transformed to:

min
M∈Sd+

∑
q∈A

[
ξq +

〈
M,xijx

T
ij − xklx

T
kl

〉]
+

+
γ

2
Tr(MTDM) . (11)

When we fixD, this problem is convex, and we use proximal gradi-
ent method to optimize it iteratively. In each iteration,M is updated
by performing a subgradient descent, and the subgradient descent

of problem (11) with respect to M is:

∇M =
∑
q∈A+

(xijx
T
ij − xklx

T
kl) + γDM (12)

where A+ denotes the subset of constraints in A that is larger than
0 in function (11). After each step,M is projected onto the positive
semidefinite cone.

M = ΠSd
+

(M − η∇M ) . (13)

Optimization algorithm of our method is summarized in Algorithm
(1) below.

Algorithm 1 Algorithm to solve problem (9).

Input: A, X ∈ Rd×n
Output: M ∈ Sd+
while not converge do

Update D ⇐ 1
2

∑k
i=1 σ

−1
i uiu

T
i .

Update M ⇐ ΠSd
+

(M − η∇M )

∇M =
∑
q∈A+(xijx

T
ij − xklx

T
kl) + γDM

end while

3.2 Convergence Analysis
Using the algorithm above, we can solve our original non-smooth

and non-convex objective function (9). In this section, we prove
the convergence of our optimization algorithm, and a local solution
can be obtained in the end. In capped trace norm optimization algo-
rithm, the number of thresholded singular values varies for different
iterations, thus the convergence proof is difficult.

THEOREM 1. Through Algorithm 1, the objective function (9)
will converge, or the values of objective function (9) are non-increasing
monotonically.

In order to prove Theorem 1, at first, we need the following Lem-
mas.

LEMMA 1. According to [23], any two hermitian matricesA,B ∈
Rd×d satisfy the inequality (σi (A), σi (B) are singular values
sorted in the same order)

d∑
i=1

σi (A)σd−i+1 (B) ≤ Tr
(
ATB

)
≤

d∑
i=1

σi (A)σi (B) .

(14)

LEMMA 2. Let M = UΣV T , σi are singular values of M
in ascending order, and there are k singular values less than ε.
M̂ = ÛΣ̂V̂ T , σ̂i are singular values of M̂ in ascending order, and
there are k̂ singular values less than ε. M̂ denotes the updated
parameter after M . ε is a constant value. So it is true that,∑

i

min{σ̂i(M̂), ε} − Tr
(
M̂TDM̂

)
≤
∑
i

min{σi(M), ε} − Tr
(
MTDM

)
,

(15)

where D is defined as (10).

Proof: It’s obvious that

σi − 2σ̂i + σ−1
i σ̂i

2 =
1

σi
(σi − σ̂i)2 ≥ 0 , (16)



hence the following inequality holds:

k∑
i=1

(
σ̂i −

1

2
σ−1
i σ̂2

i

)
≤ 1

2

k∑
i=1

σi . (17)

We know there are k̂ singular values of M̂ less than ε and they
are in ascending order, the first k̂ smallest singular values σ̂i are
less than ε, thus no matter whether k̂ ≥ k or k̂ < k, it holds that:

k̂∑
i=1

σ̂i − k̂ε ≤
k∑
i=1

σ̂i − kε . (18)

Combining two inequalities (17) and (18), we get:

k̂∑
i=1

σ̂i −
1

2

k∑
i=1

σ−1
i σ̂2

i − k̂ε ≤
1

2

k∑
i=1

σi − kε . (19)

Then, summing dε on both sides of inequality (19), where d is
the dimension of matrix M , we are able to get the following in-
equality:

k̂∑
i=1

σ̂i +
(
d− k̂

)
ε− 1

2

k∑
i=1

σ−1
i σ̂2

i

≤
k∑
i=1

σi + (d− k) ε− 1
2

k∑
i=1

σi .

(20)

As per the definition of matrix D = 1
2

k∑
i=1

σ−1
i uiu

T
i , we know

that:

Tr
(
MTDM

)
=

1

2
Tr

(
k∑
i=1

σ−1
i uiu

T
i MMT

)

=
1

2
Tr
(
UΛUTUΣ2UT

)
=

1

2
Tr
(
UΛΣ2UT

)
=

1

2

k∑
i=1

σi . (21)

Via Lemma 1, we know that:

1

2
Tr

(
k∑
i=1

σ−1
i uiu

T
i M̂M̂T

)
=

1

2
Tr
(
UΛUT ÛΣ̂2ÛT

)
≥ 1

2

k∑
i=1

σ−1
i σ̂2

i . (22)

Combining Eq. (21), inequalities (20) and (22), we have:

k̂∑
i=1

σ̂i +
(
d− k̂

)
ε− 1

2
Tr

(
k∑
i=1

σ−1
i uiu

T
i M̂M̂T

)

≤
k∑
i=1

σi + (d− k) ε− 1

2
Tr

(
k∑
i=1

σ−1
i uiu

T
i MMT

)
.

(23)

Finally, inequality holds that:∑
i

min{σ̂i(M̂), ε} − Tr
(
M̂TDM̂

)
≤
∑
i

min{σi(M), ε} − Tr
(
MTDM

)
.

(24)

LEMMA 3. Function (11), is convex with domain Sd+ , and gra-
dient of this function is clearly Lipschitz continuous with a large
enough constant L. Secondly, positive semidefinite cone is a closed
convex cone. As per [2], when we use proximal gradient method
and select a proper learning rate, the value of this function con-
verges in each iteration.

Right now, we are able to prove Theorem 1 by using the Lemmas
above.

Proof: Via Lemma 3, after we use proximal gradient descent
method to minimize function (11) in Algorithm 1, it is guaranteed
that:∑

q∈A

[
ξq +

〈
M̂,xijx

T
ij − xklx

T
kl

〉]
+

+
γ

2
Tr
(
M̂TDM̂

)
≤
∑
q∈A

[
ξq +

〈
M,xijx

T
ij − xklx

T
kl

〉]
+

+
γ

2
Tr
(
MTDM

)
. (25)

Via Lemma 2, we can easily know that:

γ
∑
i

min{σ̂i(M̂), ε} − Tr
(
M̂TDM̂

)
≤ γ

∑
i

min{σi(M), ε} − Tr
(
MTDM

)
.

(26)

Finally, we combine inequalities (25) and (26) to achieve:∑
q∈A

[
ξq +

〈
M̂,xijx

T
ij − xklx

T
kl

〉]
+

+
γ

2

∑
i

min{σ̂i(M̂), ε}

≤
∑
q∈A

[
ξq +

〈
M,xijx

T
ij − xklx

T
kl

〉]
+

+
γ

2

∑
i

min{σi(M), ε} . (27)

So far, it is clear that the value of our proposed objective func-
tion will not increase by using our optimization algorithm, thus
we prove the Theorem 1 that our optimization algorithm is non-
increasing monotonically. Because M is a positive semidefinite
matrix, we know that the objective function (9) is at least larger
than zero. So our objective function is also lower bounded. There-
fore we can conclude that our optimization algorithm converges,
and a local optimum value is to be obtained in the end.

4. EXPERIMENTAL RESULTS
We evaluate our proposed model on different datasets, including

synthetic dataset, widely used face recognition datasets, and some
other datasets in image data mining. There are two main goals
in our experiment: first, we will show that our model is able to
outperform the state-of-the-art metric learning methods; second,
our proposed capped trace norm is more stable to be applied to
solve practical problems than Fantope regularization.

4.1 Synthetic Data
In this experiment, we evaluate our proposed metric learning on

a synthetic dataset, and each constraint is quadruplet.
Dataset: We follow the setting of experiment in [14] to generate

a synthetic dataset. We define a target symmetric positive semi-

definite matrix T ∈ Sd+, and T =

(
A 0
0 0

)
, where A ∈ Se+ is a

random symmetric positive definite matrix with rank(A) = e and
e < d. Matrix A is a multiplication of one random symmetric



matrix and its transpose. So, rank(T ) = rank(A) = e. X ∈
Rd×n is a feature matrix, each element is generated from gaussian
distribution in [0, 1], and each sample is a feature vector xi ∈ Rd.
The Mahalanobis distance between two feature vectors xi and xj
is given by: d2T (xi,xj) = (xi − xj)

TT (xi − xj).
To build a training constraint set A, we randomly sample pairs

of distance using quadruplets and get the ground truth using d2T ,
so that: ∀(xi,xj ,xk,xl) ∈ A, d2T (xi,xj) < d2T (xk,xl), and
it denotes that distance between sample pair (i, j) is smaller than
sample pair (k, l). Training set A is used as training data to learn
Mahalanobis metric matrix M . Validation set V and test set T
are generated in the same way as A, and they are used to tune
parameters and test evaluation respectively.

Setting: In the experiment, we set e = 10, d = 100, n = 106,
|A| = |V| = |T | = 104. After we learn a metric M , we evaluate
these metrics on test set T , and measure accuracy of satisfying the
constraints. In this experiment, we compare with four other meth-
ods: metric learning with no regularization, metric learning with
trace norm regularization and metric learning with fantope regular-
ization. Parameter γ are tuned in the range of {10−2, 10−1, 1, 10, 102},
and rank of Mahalanobis metric M are tuned from [5, 20].

Compared Methods: Because we use quadruplet constraints
in this experiment, the general model we use to solve this problem
is: ∑

q∈A

[
ξq +

〈
M,xijx

T
ij − xklx

T
kl

〉]
+

+
γ

2
Reg(M) . (28)

• Metric learning with no regularization. We set γ = 0 in
problem (28).

• Metric learning with trace norm regularization. In this model,
γ > 0 and Reg(M) =

∑
i

σi(M), where σi(M) are singular

values of M .

• Metric learning with Fantope regularization. In this model,

γ > 0 and Reg(M) =
k∑
i=1

σi(M), where σi(M) are k

smallest singular values of M .

• Metric learning with capped trace norm regularization. In
our model, γ > 0 and Reg(M) =

∑
i

min{σi(M), ε}, where

σi(M) are singular values of M .

Evaluation Metrics: After learning a metric matrix M from
training constraints A, we evaluate it by computing the number of
dominant singular values, namely rank(M). Then we test it on test-
ing constraints T and compute the accuracy of satisfied constraints.

Results: Table 1 shows the results of our experiment. As we can
see, metric learning with Fantope regularization and capped norm
regularization performs much better than other two methods. Our
method can get a comparable results to metric learning with Fan-
tope regularization, and this is the result when we tune parameter k
for Fantope regularization very carefully.

Figure 2 represents the accuracies of metric learning with Fan-
tope regularization and our method when selection of rank changes.
It is obvious that our method always outperforms Fantope regular-
ization when we select parameter rank randomly except 10. Our
method performs more stable when we do not have enough time to
tune the rank of Mahalanobis metric M . In practice, it common
that we do not know the exact rank of a matrix, our method is more
applicable to solve practical problems.

Method Accuracy rank(M)
ML 85.62% 53

ML + Trace 88.44% 41
ML + Fantope 95.50% 10
ML + capped 95.43% 10

Table 1: Synthetic experiment results.
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ML+Fantope

Our method

Figure 2: Accuracy vs the number of rank k

4.2 Face Verification
In this section, we evaluate our method, pairwise constraints with

capped norm regularization, on two challenging face recognition
datasets: Labeled Faces in the Wild (LFW) [7] and Public Figures
Face Database (PubFig) [12]. In our experiments, we focus on face
verification task, namely deciding if two face images are from the
same person, and results show that our method can outperform the
state-of-the-art metric learning algorithm.

4.2.1 Labeled Faces in The Wild
Dataset: The Labeled Faces in the Wild dataset is considered as

the current state-of-the-art face recognition benchmark. It contains
13,233 unconstrained face images of 5749 individuals, and 1680 of
these pictured people appear in two or more distinct photos in this
data set.

There are two different feature representations in this experi-
ment, LFW SIFT feature dataset and LFW Attribute feature dataset.
We use the face representation proposed by [5], it extracts SIFT de-
scriptors [6] at 9 automatically detected facial landmarks over three
scales. Each image is a feature vector of size 3,456. To make this
dataset tractable for distance metric learning algorithm and save
time, we perform principle component analysis to reduce the di-
mension, and we select 100 largest principle components in this ex-
periment [11]. We also use ‘high-level describable visual attributes
(gender, race, age, hair color) in [12]. These features of face image
are insensitive to pose, illumination, expression and other imaging
conditions, and can avoid some obvious mistakes, for example men
are confused for women or child for middle-aged. Each image is
represented by a vector x ∈ Rd where d is the number of attributes
to describe the image. Each entry in vector x means the score of
presence of each specific attribute.

Setting: To compare with other state-of-the-art methods on face
verification, we follow the experiment setting in [11]. Data are
organized in 10 folds, and each fold consists of 300 similar con-
straints (two faces in a pair are from the same person) and 300 dis-
similar constraints (two faces in a pair are from different person).
The average over results of 10 folds is used as final evaluation met-
ric. In the experiment, we an only access pairwise constraints given



by similar or dissimilar pairs, and labels or more training data are
not allowed. In the experiment, we tune parameter µ from range
[10−2, 10−1, 1, 10, 102], and parameter rank k of matrix M from
{30, 35, 40, 45, 50, 55, 60, 65, 70} in LFW SIFT dataset and from
{10, 15, 20, 25, 30, 35, 40, 45, 50} in LFW Attribute dataset. For
other methods, we follow their already tuned parameter setting in
[11].

To prove the stableness of our method, we split LFW SIFT fea-
ture dataset and LFW attribute feature dataset into 5 folds, and eval-
uate our metric learning with capped trace norm model and metric
learning with Fantope norm on these datasets. We run experiments
5 times using different training/testing splits and compute mean
value and standard variance for validation.

Compared Methods:

• IDENTITY: We compute Euclidean distance directly as a
baseline.

• MAHALANOBIS: Traditional Mahalanobis distance between
images in a pair is computed, where the metric matrix is in-
verse of covariance between two vectors.

• KISSME: A metric learning methods based on a statistical
inference perspective. It learns a distance metric from equiv-
alence constraints and can be used in large scale dataset [11].

• ITML: Metric learning methods proposedd in [1]. They use
LogDet divergence as regularization so that they do not need
do explicit positive semi-definite projection.

• LDML: [5] offers a metric learning method that uses logistic
discriminant to learn a metric from a set of labeled image
pairs.

Because of the setting of this experiment, for method Fantope
and Cap, the general function for their models on this task is:∑

(i,j)∈S

[〈
M, xijxTij

〉
− u
]
+

+
∑

(i,j)∈D

[
l −
〈
M, xijxTij

〉]
+

+ γ
2

Reg(M) , (29)

whereD and S denote dissimilar pair set and similar pair set
respectively. u is the upper bound for Mahalanobis distance
between two samples in similar pair set, and l represents the
distance lower bound between two samples in dissimilar pair
set.

• ML+Fantope: It denotes metric learning with Fantope regu-

larization [14]. As per its definition, Reg(M) =
k∑
i=1

σi(M).

• ML+Cap: Pairwise constraints metric learning with capped
trace norm regularization. Reg(M) =

∑
i

min{σi(M), ε}.

Evaluation Metrics: To measure the face verification accuracy
for all these compared methods, we report a Receiver Operator
Characteristic (ROC) curve. To compare the performance of each
method, we compute Equal Error Rate (EER) of the respective
method, and use 1 − EER as evaluation criterion, and the method
with the lowest EER, or the highest 1 − EER is the most accurate
one.

Results: We plot ROC curve for each method in Figure 4, and
1−EER values are also computed to evaluate their performance.
Figure 4a shows the results on LFW SIFT feature dataset. Ma-
halanobis distance between two similar pairs performs quite well
comparing with Euclidean distance, it increases the performance
from 67.5% to 74.8%. KISSME method is the state-of-the-art

(a) Test results on LFW SIFT Feature dataset. First two rows face pairs
from the same person correctly verified by our method but not by met-
ric learning with Fantope regularization. Last two rows are face pairs
from different person correctly verified by our method but not by metric
learning with Fantope regularization.

(b) Test results on LFW Attribute Feature dataset. First two rows face
pairs from the same person correctly verified by our method but not
by metric learning with Fantope regularization. Last two rows are face
pairs from different person correctly verified by our method but not by
metric learning with Fantope regularization.

Figure 3: Sample results on LFW dataset.

method on this feature type and reaches an 1−EER at 80.06%, it
outperforms widely used metric learning methods ITML and LDML.
It is clear that pairwise contraint with low-rank approximation meth-
ods, Fantope and CAP, perform better than KISSME, and reach
81.4%, and 81.7% respectively. Our method increases the per-
formance of Euclidean distance by 14.2% and KISSME method
by 0.9%. Figure 4b presents the performance of each method on
LFW Attribute feature dataset. Our method outperforms KISSME
method, and also works better than metric learning than Fantope
regularization by 0.4%. 3 shows the result samples on this dataset.

We run 5-fold cross-validation experiments on Fantope method
and our method. In Figure 5, we plot accuracy result with respect
to rank selection. When we select rank parameter k roughly, it is
clearly that our method can get better results than metric learning
with Fantope regularization. In large scale dataset, it not piratical
to tune parameters as carefully as in small dataset, and sometimes,
there is not exact rank at all. So, our method is much more appli-
cable to this kind of situation, and performs better when we inputs
an approximation of matrix rank.
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(a) ROC curves on SIFT Feature dataset
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(b) ROC curves on Attribute Feature dataset

Figure 4: Face verification results on LFW dataset: Figure (4a) ROC curve for different methods on LFW SIFT feature dataset. Figure (4b)
ROC curve for different methods on LFW Attribute dataset.
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(a) Verification accuracy vs Rank/SIFT Feature
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(b) Verification accuracy vs Rank/Attribute Feature

Figure 5: Verification accuracy with respect to rank selection on
LFW SIFT feature dataset 5a and LFW attribute feature dataset 5b

4.2.2 Public Figures Face Database
Dataset: The PubFig database is a large, real-world face dataset

consisting of 58,797 images of 200 people collected from the in-
ternet. Images in the data set are downloaded from the internet us-

ing search query on a variety of image search engines. Compared
to LFW, there are larger number of images per person, and more
variation on different poses, lighting conditions, and expressions.
Served as a complementary to LFW dataset, PubFig dataset con-
sists “high-level” features of visual face traits that are not sensitive
to pose, illumination or other imaging conditions.

Setting: Face verification benchmark dataset consists of 20,000
pairs of images of 140 people. The data is divided into 10 folds with
mutually disjoint sets of 14 people each, and each fold contains
1,000 intra and 1,000 extra-personal pairs.

Similar to experiment setting in LFW dataset, to prove stableness
of our method, we split Pubfig feature dataset into 5 folds, and eval-
uate our metric learning with capped trace norm model and metric
learning with Fantope norm on these datasets. We run experiments
5 times using different training/testing splits and compute average
and standard variance.

Compared Methods: We use the same compared methods in
LFW experiment.

Evaluation Metrics: ROC figure is plotted for each method and
we also compare verification accuracy when we tune parameter k
for methods Fantope and Cap.

Results: Figure 6 represents the performance of each compared
method on Pubfig dataset. We calculate Equal Error Rate for them,
and it is clear that our method outperforms other correlated metric
learning methods. By imposing capped trace norm regularization,
our method increases the performance of traditional Mahalanobis
distance by about 6%, and the state-of-the-art KISSME method by
over 1%.

We also perform another experiments to show the process of pa-
rameter tuning procedure. In 7, we tune parameter rank k from 5 to
40, and we can see that our method works more stable than metric
learning with Fantope regularization. The performance of Fantope
regularization is greatly subject to the selection of rank k. In this
figure, we use trace norm regularization as baseline.

4.3 Image Classification
In this section, we evaluate our methods on image classification„

and the task is assigning an image to a predefined class. We can also
look as this task as object recognition. In the experiments, we use
image dataset with attribute features. Attribute is an important type
of semantic properties shared among different objects or activities.
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Figure 6: ROC curves of different methods on the Pubfig datasets.
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Figure 7: Verification accuracy vs rank k on Pubfig dataset

Figure 8: Classification accuracy of each method on Pubfig dataset.

It is a representation in a higher level than the raw feature repre-
sentation directly extracted from images or videos. In recent years,
several attribute datasets are used by various researchers for the
study of utilizing attributes for different vision applications. There
are two image classification datasets, PubFig dataset and Outdoor
Scene Recognition (OSR) dataset.

4.3.1 Public Figures Face Database
Dataset: We use a subset face images of Pubfig dataase, and

there are 771 images from 8 face categories.
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Figure 9: Classification accuracy vs rank k on Pubfig dataset.

(a) Results of 5 neareset neighbors when we query an image on Pubfig
dataset. First row is the results of our method, and second shows the
results of metric learning with Fantope regularization.

(b) Results of 5 neareset neighbors when we query an image on Pubfig
dataset. First row is the results of our method, and second shows the
results of metric learning with Fantope regularization.

Figure 10: Results of 5 neareset neighbors when we query an im-
age. Green line means this neighbor is in the same class with query
image, and red line denotes they are different.

Setting: We use the same experiment setup as [14]. Each person
contributes 30 images as training data to learn Mahalanobis metric
matrix M and build classifier, other images are used as testing data
to evaluate classification performance. We run this experiment 5
times, and 30 images per person in training data are selected ran-



domly each time, and average performance is used as evaluation
criterion.

Compared Methods:

• KNN: In this method, we use k-nearest neighbor method
as classifier and compute Euclidean distance to measure the
similarity between any two images. This method works as a
baseline.

• SVM: Support vector machine (SVM) is a widely used clas-
sifier. In this method, we compare our method with SVM,
and the code is from LibLinear [3].

• LMNN: It is one of the most widely-used Mahalanobis dis-
tance metric learning methods. In this method, they use la-
beled information to generate triplet constraints.

We impose low-rank constraint on matrixM in LMNN method,
and the general form is,

γ
2

Reg(M) + (1− µ)
∑

(i,j)∈S

〈
M, xijxTij

〉
+µ

∑
(i,j,k)∈R

[
1 +

〈
M, xijxTij − xikxTik

〉]
+

(30)

• LMNN+Trace norm: We impose trace norm as low-rank reg-
ularization approximation and Reg(M) =

∑
i

σi(M), where

σi(M) is singular value of matrix M .

• LMNN+Fantope: Instead of using trace norm regularization
as low-rank approximation, we impose rank of matrix explic-

itly, and Reg(M) =
k∑
i=1

σi(M), where σi(M) are k smallest

singular values of M .

• LMNN+Capped trace norm: We minimize singular value of
matrix M smaller than a value learned in the optimization ε,
so Reg(M) =

∑
i

min{σi(M), ε}.

Evaluation Metrics: In this experiment, we compute classifi-
cation accuracy for each method as evaluation criterion.

Results: Figure 8 represents the performance of compared meth-
ods. 1NN method using Euclidean distance works really bad on
this task, and its accuracy is just 55%. SVM method increases the
performance of 1NN method greatly by about 20%. When we use
LMNN method to learn Mahalanobis distance for this task, and
use 1NN classifier, the accuracy reaches 77% and is better than
SVM. We impose low-rank regularization, trace norm, Fantope
regularization, and capped trace norm respectively, it is clear that
our method works best and increases the performance of LMNN
method by about 1.5%. Sample query results are presented in Fig-
ure 10a, we plot 5 nearest neighbors for each query, and we can
find out that our method does a better job than metric learning with
Fantope regularization in this task.

In Figure 9, we shows the performance of metric learning with
Fantope regularization and capped trace norm method when we
tune parameter rank k. The performance of Fantope regulariza-
tion is very sensitive to the choice of parameter rank k, it is ob-
vious that sometimes, the performance of Fantope regularization is
worse than trace norm regularization. It is clear that when we select
k from 40 to 100, our method performs much stable than Fantope
regularization, because it explicitly controls the rank of matrix M
to be k. Our method can learn an adaptive threshold in the opti-
mization and the rank of matrix M is not necessary to be k.

Figure 11: Classification accuracy of each method on OSR dataset.
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Figure 12: Classification accuracy vs rank k on OSR dataset.

4.3.2 Outdoor Scene Recognition Dataset
Dataset: We use Outdoor Scene Recognition (OSR) dataset from

[21], and there are 2688 images from 8 scene categories, and it is
described by high level attribute features.

Setting: In the experiment, we also use 30 images for each cat-
egory as training data, and other images are used as testing data.
Each time, we select training data randomly and we repeat this pro-
cedure 5 times, and use average accuracy as performance of each
method.

Compared Methods: There are six compared methods as in
last section, namely KNN, SVM, LMNN, LMNN+Trace norm,
LMNN+Fantope and LMNN+capped trace norm.

Evaluation Metrics: Classification accuracy is compute as the
performance of each method.

Results: In Figure 11, 1NN method reaches accuracy at about
65%, and SVM method perform a large increase by about 10%.
Although the result of 1NN method using Mahalanobis distance
learned by LMNN is a little worse than SVM method, LMNN
method with low-rank regularization always outperform the result
of SVM. We can also find out that our LMNN with capped trace
regularization method works better than trace norm and Fantope
regularization, and reaches an accuracy at about 76.5%. It im-
proves LMNN method by about 1%. Figure 10b shows two sample
query results of two compared methods. It is a little hard to distin-
guish coast and mountain when both of them has sky in the back, it
is clear that our method learns a better Mahalanobis distance to do
classification and image search.

We also plot figure to compare the performance of LMNN method
with low-rank regularization, and we use LMNN with trace norm
regularization as a baseline. In Figure 12, it is clear that our method



always works better than metric learning with Fantope regulariza-
tion. When we make k = 40, we can find that the performance of
Fantope regularization is even worse than the baseline.

5. CONCLUSION
In this paper, we propose to use a novel low-rank regulariza-

tion, capped trace norm regularization, to impose on metric learn-
ing method. Capped trace norm regularization is a better rank mini-
mization approximation than trace norm. It works more stable than
Fantope regularization and can be seen as an adaptive Fantope reg-
ularization as well. We also introduce an efficient optimization al-
gorithm, and prove the convergence of our objective function. Ex-
perimental results show that our method outperforms the state-of-
the-art metric learning methods.
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