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ABSTRACT
We study the composite minimization problem where the objective
function is the sum of two convex functions: one is the sum of a fi-
nite number of strongly convex and smooth functions, and the other
is a general convex function that is non-differentiable. Specifically,
we consider the case where the non-differentiable function is block
separable and admits a simple proximal mapping for each block.
This type of composite optimization is common in many data min-
ing and machine learning problems, and can be solved by block co-
ordinate descent algorithms. We propose an accelerated stochastic
block coordinate descent (ASBCD) algorithm, which incorporates
the incrementally averaged partial derivative into the stochastic par-
tial derivative and exploits optimal sampling. We prove that AS-
BCD attains a linear rate of convergence. In contrast to uniform
sampling, we reveal that the optimal non-uniform sampling can be
employed to achieve a lower iteration complexity. Experimental
results on different large-scale real data sets support our theory.

CCS Concepts
•Information systems→ Data mining; •Computing methodo-
logies→Machine learning;

Keywords
Stochastic block coordinate descent; Sampling

1. INTRODUCTION
We consider the problem of minimizing a composite function,

which is the sum of two convex functions:

w∗ = argmin
w∈Rd

P (w) = F (w) +R(w), (1.1)

where F (w) = n−1∑n
i=1 fi(w) is a sum of a finite number of

strongly convex and smooth functions, and R(w) is a block sep-
arable non-differential function. To explain block separability, let
{G1, . . . ,Gk} be a partition of all the d coordinates where Gj is
a block of coordinates. A subvector wGj is [wk1 , . . . , wk|Gj |

]>,
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where Gj = {k1, . . . , k|Gj |} and 1 ≤ j ≤ m. The fact that R(w)
is block separable is equivalent to

R(w) =

m∑
j=1

rj(wGj ). (1.2)

The above problem is common in data mining and machine
learning, such as the regularized empirical risk minimization,
where F (w) is the empirical loss function averaged over the train-
ing data sets, and R(w) is a regularization term. For example,
suppose that for a data mining problem there are n instances in a
training data set {(x1, y1), (x2, y2), . . . , (xn, yn)}. By choosing
the squared loss fi(w) = (〈w,xi〉 − yi)

2/2 and R(w) = 0, a
least square regression is obtained. If R(w) is chosen to be the
sum of the absolute value of each coordinate in w, it becomes a
lasso regression [46]. In general, the problem in (1.1) can be ap-
proximately solved by proximal gradient descent algorithms [32]
and proximal coordinate descent algorithms [23].

Coordinate descent algorithms have received increasing atten-
tion in the past decade in data mining and machine learning due
to their successful applications in high dimensional problems with
structural regularizers [12, 11, 28, 2, 47]. Randomized block co-
ordinate descent (RBCD) [31, 36, 26, 39, 4, 14, 21] is a special
block coordinate descent algorithm. At each iteration, it updates a
block of coordinates in vector w based on evaluation of a random
feature subset from the entire training data instances. The iteration
complexity of RBCD was established and extended to composite
minimization problems [31, 36, 26]. RBCD can choose a con-
stant step size and converge at the same rate as gradient descent
algorithms [31, 36, 26]. Compared with gradient descent, the per-
iteration time complexity of RBCD is much lower. This is because
RBCD computes a partial derivative restricted to only a single co-
ordinate block at each iteration and updates just a single coordinate
block of vector w. However, it is still computationally expensive
because at each iteration it requires evaluation of the gradient for
all the n component functions fi: the per-iteration computational
complexity scales linearly with the training data set size n.

In view of this, stochastic block coordinate descent was proposed
recently [8, 51, 48, 35]. Such algorithms compute the stochastic
partial derivative restricted to one coordinate block with respect
to one component function, rather than the full partial derivative
with respect to all the component functions. Essentially, these al-
gorithms employ sampling of both features and data instances at
each iteration. However, they can only achieve a sublinear rate of
convergence.

We propose an algorithm for stochastic block coordinate descent
using optimal sampling, namely accelerated stochastic block co-
ordinate descent with optimal sampling (ASBCD). On one hand,
ASBCD employs a simple gradient update with optimal non-
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Algorithm 1 ASBCD: Accelerated Stochastic Block Coordinate
Descent with Optimal Sampling

1: Inputs: step size η and sampling probability set P =
{p1, . . . , pn} of component functions f1, . . . , fn

2: Initialize: φ(0)
i = w(0) ∈ Rd

3: for t = 1, 2, . . . do
4: Sample a component function index i from {1, . . . , n} at

probability pi ∈ P with replacement
5: φ

(t)
i ← w(t−1)

6: Sample a coordinate block index j from {1, . . . ,m} uni-
formly at random with replacement

7: w
(t)
Gj ← proxη,j

(
w

(t−1)
Gj − η

[
(npi)

−1∇Gjfi(φ
(t)
i ) −

(npi)
−1∇Gjfi(φ

(t−1)
i ) + n−1∑n

k=1∇Gjfk(φ
(t−1)
k )

])
8: w

(t)

\Gj
← w

(t−1)

\Gj
9: end for

uniform sampling, which is in sharp contrast to the aforementioned
stochastic block coordinate descent algorithms based on uniform
sampling. On the other hand, we incorporate the incrementally
averaged partial derivative into the stochastic partial derivative to
achieve a linear rate of convergence rather than a sublinear rate.

To be specific, given error ε and number of coordinate blocksm,
for strongly convex fi(w) with the convexity parameter µ and the
Lipschitz continuous gradient constant Li (LM = max

i
Li), the

iteration complexity of ASBCD is

O
[
m

(
1

n

n∑
i=1

Li
µ

+ n

)
log

1

ε

]
.

Notation. Here we define and describe the notation used through
this paper. Let wk be the kth element of a vector w =

[w1, . . . , wd]
> ∈ Rd. We use ‖w‖ = ‖w‖2 =

(∑d
k=1 w

2
k

)1/2 to
denote the `2 norm of a vector w and ‖w‖1 =

∑d
k=1 |wk|. The

subvector of w excluding wGj is denoted by w\Gj . The simple
proximal mapping for each coordinate block, also known as the
proximal operator, is defined as

proxη,j(w) = argmin
u∈Rd

1

2η
‖w − u‖2 + rj(u). (1.3)

2. THE PROPOSED ALGORITHM
We propose ASBCD (Algorithm 1), an accelerated algorithm for

stochastic block coordinate descent with optimal sampling. It starts
with known initial vectors φ(0)

i = w(0) ∈ Rd for all i.
In sharp contrast to stochastic block coordinate descent with uni-

form sampling, ASBCD selects a component function according to
non-uniform probabilities (Line 4 of Algorithm 1).

In Algorithm 1, we define the gradient of any function f(φ)
with respect to a coordinate block Gj of φ as ∇Gjf(φ) =

[∇f(φ)]Gj = [∂f(φ)/∂φk1 , . . . , ∂f(φ)/∂φk|Gj |
]>, where Gj =

{k1, . . . , k|Gj |}.
Algorithm 1 has a lower computational cost than either proximal

gradient descent or RBCD at each iteration. The update at each
iteration of Algorithm 1 is restricted to only a sampled component
function (Line 4) and a sampled block of coordinates (Line 6).

The key updating step (Line 7) with respect to a stochastic
block of coordinates incorporates the incrementally averaged
partial derivative into the stochastic partial derivative with the
third term n−1∑n

k=1∇Gjfk(φ
(t−1)
k ) within the square bracket.

At each iteration with i and j sampled, this summation

term
∑n
k=1∇Gjfk(φ

(t−1)
k ) is efficiently updated by subtracting

∇Gjfi(φ
(t−2)
i ) from itself while adding∇Gjfi(φ

(t−1)
i ) to itself.

REMARK 2.1. For many empirical risk minimization problems
with each training data instance (xi, yi) and a loss function `, the
gradient of fi(w) with respect to w is a multiple of xi: ∇fi(w) =
`′(〈w,xi〉, yi)xi. Therefore, ∇fi(φi) can be compactly saved in
memory by only saving scalars `′(〈φi,xi〉, yi) with the same space
cost as those of many other related algorithms MRBCD, SVRG,
SAGA, SDCA, and SAG described in Section 5.

REMARK 2.2. The sampling probability of component func-
tions fi in Line 4 of Algorithm 1 is according to a given prob-
ability set P = {p1, . . . , pn}. The uniform sampling scheme em-
ployed by stochastic block coordinate descent methods fits under
this more generalized sampling framework as a special case, where
pi = 1/n. We reveal that the optimal non-uniform sampling can
be employed to lower the iteration complexity in Section 3.

When taking the expectation of the squared gap between the it-
erate w(t) and the optimal solution w∗ in (1.1) with respect to
the stochastic coordinate block index, the obtained upper bound
does not depend on such an index or the proximal operator. This
property may lead to additional algorithmic development and here
it is important for deriving a linear rate of convergence for Al-
gorithm 1. We prove the rate of convergence bound in Appendix A
after presenting and discussing the main theory in Section 3.

3. MAIN THEORY
In this section, we present and discuss the main theory of our

proposed algorithm (Algorithm 1). The proof of the main theory is
presented in the appendix.

We begin with the following assumptions on F (w) and R(w)
in the composite objective optimization problem as characterized
in (1.1). These assumptions are mild and can be verified in many
regularized empirical risk minimization problems in data mining
and machine learning.

ASSUMPTION 3.1 (LIPSCHITZ CONTINUOUS GRADIENT).
Each gradient ∇fi(w) is Lipschitz continuous with the constant
Li, i.e., for all w ∈ Rd and u ∈ Rd we have

‖∇fi(w)−∇fi(u)‖ ≤ Li ‖w − u‖ .

ASSUMPTION 3.2 (STRONG CONVEXITY). Each function
fi(w) is strongly convex, i.e., there exists a positive constant µ
such that for all w ∈ Rd and u ∈ Rd we have

fi(u)− fi(w)− 〈∇fi(w),u−w〉 ≥ µ

2
‖u−w‖2 .

Assumption 3.2 implies that F (w) is also strongly convex, i.e.,
there exists a positive constant µ such that for all w ∈ Rd and
u ∈ Rd we have

F (u)− F (w)− 〈∇F (w),u−w〉 ≥ µ

2
‖u−w‖2 .

ASSUMPTION 3.3 (BLOCK SEPARABILITY). The regulariz-
ation functionR(w) is convex but non-differentiable, and a closed-
form solution can be obtained for the proximal operator defined in
(1.3). Importantly, R(w) is block separable as defined in (1.2).

With the above assumptions being made, now we establish the
linear rate of convergence for Algorithm 1, which is stated in the
following theorem.



THEOREM 3.4. Let LM = max
i
Li and pI = min

i
pi. Suppose

that Assumptions 3.1—3.3 hold. Based on Algorithm 1 and with
w∗ defined in (1.1), by setting η = max

i
npi/[2(nµ + Li)], ζ =

npI/(LMη)−1 > 0, κ = L2
Mm/[2nη(LM−µ+LMηµζ)] > 0,

and 0 < α = 1− ηµ/m < 1, it holds that

Ei,j [‖w(t) −w∗‖2]

≤ αt
[
‖w(0) −w∗‖2 + 1

κ
[F (w(0))− F (w∗)

− 〈∇F (w∗),w(0) −w∗〉]
]
.

REMARK 3.5. Theorem 3.4 justifies the linear rate of conver-
gence for Algorithm 1. Parameter α depends on the number of
coordinate blocks m. It may be tempting to set m = 1 for faster
convergence. However, this is improper due to lack of considera-
tions for the computational cost at each iteration. When m = 1, at
each iteration the gradient is updated with respect to all coordin-
ates. When m > 1, at each iteration of Algorithm 1 the gradient is
updated with respect to only a sampled coordinate block among
all coordinates, so the computational cost is lower than that of
m = 1 per iteration. Therefore, comparing algorithms that up-
date the gradient with respect to different numbers of coordinates
per iteration should be based on the same number of entire data
passes (the least possible iterations for passing through the entire
data instances with respect to all coordinates). We perform experi-
ments to compare such different algorithms in Section 4.

REMARK 3.6. Theorem 3.4 implies a more generalized itera-
tion complexity of Algorithm 1, which is

O
[
m

(
min
i

Li/µ+ n

npi

)
log

1

ε

]
(3.1)

given the error ε > 0. The uniform sampling scheme fits this more
generalized result with pi = 1/n. With LM = max

i
Li, by setting

pi = 1/n, η = 1/ [2(LM + nµ)] > 0, ζ = (LM + 2nµ) /LM >
0, κ = m/ [2nη(1− ηµ)] > 0, and 0 < α = 1 − µ/[2m(LM +
nµ)] < 1, Theorem 3.4 still holds. The iteration complexity of
ASBCD with uniform sampling is

O
[
m

(
LM
µ

+ n

)
log

1

ε

]
. (3.2)

Now we show that the iteration complexity in (3.2) can be further
improved by optimal sampling. To begin with, minimizing α can be
achieved by maximizing η with respect to pi. It is easy to show that
η is maximized when pi = (n+Li/µ)/

∑n
k=1(n+Lk/µ). Then,

by setting η = n/
[
2
∑n
i=1(nµ+ Li)

]
> 0 we obtain the iteration

complexity of ASBCD with optimal sampling:

O
[
m

(
1

n

n∑
i=1

Li
µ

+ n

)
log

1

ε

]
. (3.3)

COROLLARY 3.7. Let LM = max
i
Li. Suppose that Assump-

tions 3.1—3.3 hold. Based on Algorithm 1 and with w∗ defined
in (1.1), by setting pi = (n + Li/µ)/

∑n
k=1(n + Lk/µ), ζ =∑n

i=1 L
−1
i /

∑n
i=1(2nµ + 2Li)

−1 − 1 > 0, and 0 < α =
1−nµ/[2m

∑n
i=1(nµ+Li)] < 1, we chose η = n/[2

∑n
i=1(nµ+

Li)] > 0 and it holds that

Ei,j [‖w(t) −w∗‖2]

≤ αt
[
‖w(0) −w∗‖2 + n

m(LM + nµ)
[F (w(0))− F (w∗)

− 〈∇F (w∗),w(0) −w∗〉]
]
.

Comparing the iteration complexity of ASBCD in (3.3) and
(3.2), it is clear that the optimal sampling scheme results in a lower
iteration complexity than uniform sampling.

4. EVALUATION
We conduct experiments to evaluate the performance of our pro-

posed ASBCD algorithm in comparison with different algorithms
on large-scale real data sets.

4.1 Problems and Measures
We define the problems and measures used in the empirical eval-

uation. Classification and regression are two corner-stone data min-
ing and machine learning problems. We evaluate the performance
of the proposed ASBCD algorithm in solving these two problems.

4.1.1 Classification and Regression Problems
As a case study, the classification problem is `1,2-regularized

logistic regression:

w∗ = argmin
w∈Rd

P (w)

= argmin
w∈Rd

1

n

n∑
i=1

log
[
1 + exp(−yi〈w,xi〉)

]
+
λ2

2
‖w‖2 + λ1 ‖w‖1 .

For the the regression problem in this empirical study, the elastic
net is used:

w∗ = argmin
w∈Rd

P (w)

= argmin
w∈Rd

1

n

n∑
i=1

(〈w,xi〉 − yi)2

2
+
λ2

2
‖w‖2 + λ1 ‖w‖1 .

The regularization parameters λ1 and λ2 in both problems are
tuned by proximal gradient descent using five-fold cross-validation
on the training data sets.

4.1.2 Measures for Convergence and Testing Accur-
acy

Recall the problem of composite function minimization as form-
alized in (1.1). In evaluation of the algorithm performance on the
convergence effect, we use the measure of objective gap value:
P (w)− P (w∗).

To further study model prediction capabilities that are trained by
different algorithms, we evaluate testing accuracy using two differ-
ent measures:

• AUC: For the classification problem, area under receiver oper-
ating characteristic curve (AUC) is measured [13]. Note that a
higher testing accuracy can be reflected by a higher AUC.

• MSE: For the regression problem, mean squared error (MSE) is
compared. Note that a higher testing accuracy can be reflected
by a lower MSE.

4.2 Large-Scale Real Data Sets
The empirical studies are conducted on the following four real

data sets that are downloaded using the LIBSVM software [3]:

• KDD 2010: Bridge to Algebra data set from KDD Cup 2010
Educational Data Mining Challenge [44].

• COVTYPE: Data set for predicting forest cover type from car-
tographic variables [22].



Table 1: Summary statistics of four large-scale real data sets in the experiments. These data sets are used for evaluating performance
of algorithms in solving two corner-stone data mining and machine learning problems: classification and regression.

Data Set #Training Instances #Testing Instances #Features Problem Measure for Testing Accuracy (↑)
KDD 2010 19,264,097 748,401 29,890,095 Classification AUC (↑)
COVTYPE 290,506 290,506 54 Classification AUC (↑)
RCV1 20,242 677,399 47,236 Classification AUC (↑)
E2006-TFIDF 16,087 3,308 150,360 Regression MSE (↓)

• RCV1: Reuters Corpus Volume I data set for text categorization
research [20].
• E2006-TFIDF: Data set for predicting risk from financial re-

ports from thousands of publicly traded U.S. companies [16].

Each of these real data sets has a large size in either its instance
count or feature size, or both. For instance, the KDD 2010 data set
has over 19 million training instances with nearly 30 million fea-
tures. Summary statistics of these data sets are provided in Table 1.

4.3 Algorithms for Comparison
We evaluate the performance of ASBCD in comparison with re-

cently proposed competitive algorithms. To comprehensively eval-
uate ASBCD, we also compare variants of ASBCD with different
sampling schemes.

Below are the seven algorithms for comparison.

• SGD (SG): Proximal stochastic gradient descent. This algorithm
has a sublinear rate of convergence. To ensure the high competit-
iveness of this algorithm, the implementation is based on a recent
work [1].
• SBCD (SB): Stochastic block coordinate descent. It is the same

as SGD except that SBCD updates the gradient with respect to a
randomly sampled block of coordinates at each iteration. SBCD
also converges at a sublinear rate.
• SAGA (SA): Advanced stochastic gradient method [9]. This al-

gorithm is based on uniform sampling of component functions.
It updates the gradient with respect to all coordinates at each it-
eration. SAGA has a linear rate of convergence.
• SVRG (SV): (Proximal) stochastic variance reduced gradi-

ent [15, 50]. This algorithm is based on uniform sampling of
component functions. It updates the gradient with respect to all
coordinates at each iteration. Likewise, SVRG converges to the
optimum at a linear rate.
• MRBCD (MR): Mini-batch randomized block coordinate des-

cent [54]. This algorithm uses uniform sampling of component
functions. MRBCD converges linearly to the optimum.
• ASBCD-U (U): The proposed ASBCD algorithm with uniform

sampling of component functions. The sampling probability pi
for component function fi is pi = 1/n. The sampling probabil-
ity pi for component function fi: pi = Li/

∑n
k=1 Lk.

• ASBCD-O (O): The proposed ASBCD algorithm with optimal
sampling as described in Corollary 3.7. The sampling probabil-
ity pi for component function fi is pi = (n+Li/µ)/

∑n
k=1(n+

Lk/µ).

4.4 Experimental Setting
Note that algorithms SBCD, MRBCD, and ASBCD update the

gradient with respect to a sampled block of coordinates at each it-
eration. In contrast, SGD, SAGA, and SVRG update the gradi-
ent with respect to all the coordinates per iteration. Recalling Re-
mark 3.5, comparison of these algorithms is based on the same en-
tire data passes.

4.4.1 Equipment Configuration
We evaluate convergence and testing accuracy with respect to

training time. The experiments on the KDD 2010 data set are con-
ducted on a computer with two 14-core 2.4GHz CPUs and a 256GB
RAM while the experiments on the other data sets are conducted on
a computer with an 8-core 3.4GHz CPU and a 32GB RAM.

4.4.2 Parameter Setting
Different from the other algorithms in comparison, the SVRG

and MRBCD algorithms both have multiple stages with two nes-
ted loops. The inner-loop counts in SVRG and MRBCD are set
to the training data instance counts as suggested in a few recent
studies [15, 50, 54].

For each algorithm, its parameters, such as the step size (η in
this paper), are chosen around the theoretical values to give the
fastest convergence under the five-fold cross validation. Here we
describe the details. The training data set is divided into five subsets
of approximately the same size. One validation takes five trials
on different subsets: in each trial, one subset is left out and the
remaining four subsets are used. The convergence effect in one
cross-validation is estimated by the averaged performance of the
five trials.

4.5 Experimental Results
All the experimental results are obtained from 10 replications.

Both the mean and standard deviation values are reported in
Tables 2—6. For clarity of exposition, Figures 1—4 plot the mean
values of the results from all these replications.

4.5.1 Results on KDD 2010
For classification on KDD 2010, Figure 1 compares convergence

of all the algorithms for the same number of entire data passes.
In general, among all the seven algorithms in comparison, AS-
BCD with optimal sampling converges fastest to the optimum for
the same number of entire data passes. Sublinearly-convergent al-
gorithms SGD and SBCD converge much more slowly than the
other linearly-convergent algorithms.

We also observe from Figure 1 that, stochastic block coordinate
descent algorithms generally converge faster than those algorithms
without using stochastic block coordinates. For instance, SBCD
converges faster than SGD while MRBCD converges faster than
SVRG for the same number of entire data passes.

The varied convergence effects across all the seven algorithms
can be visualized more clearly when they are compared for the
same training time. Figure 2 exhibits such performance variations.
Clearly, ASBCD with optimal sampling achieves the fastest con-
vergence for the same training time. Similar to the results in Fig-
ure 1, for the same training time, stochastic block coordinate des-
cent algorithms still generally converge faster than those algorithms
without using stochastic block coordinates.

It is not surprising that the convergence effects influence the test-
ing accuracy. Tables 2 and 3 report the AUC comparison of al-
gorithms for the same entire data passes and training time. Consist-
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Figure 1: Classification on KDD 2010: Convergence compar-
ison of algorithms for the same number of entire data passes.
In general, ASBCD with optimal sampling (O) converges fast-
est to the optimum for the same number of entire data passes.
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Figure 2: Classification on KDD 2010: Convergence compar-
ison of algorithms for the same training time. In general, AS-
BCD with optimal sampling (O) converges fastest to the op-
timum for the same training time.

ent with the observed convergence performance in Figures 1 and 2,
ASBCD with optimal sampling generally achieves the highest test-
ing accuracy for both the same number of entire data passes and the
same training time.

4.5.2 Results on More Data Sets
We further compare the algorithms on three more data sets COV-

TYPE, RCV1, and E2006-TFIDF as described in Section 4.2 and
summarized in Table 1. COVTYPE and RCV1 are used for the
classification problem, while E2006-TFIDF is for the regression
problem. All the results are reported in Tables 4—6, Figure 3, and
Figure 4. To begin with, we describe the convergence effects. Fig-
ures 3 and 4 compare convergence of algorithms for the same entire
data passes and for the same training time. In general, ASBCD with
optimal sampling (O) converges fastest to the optimum for both the
same number of entire data passes and the same training time.

Tables 4—6 present the testing accuracy comparison results for
the same training time. Note that a lower MSE for regression on
E2006-TFIDF indicates a higher testing accuracy. These testing
accuracy results agree with the varied convergence effects of dif-
ferent algorithms on the same data set. Among all the algorithms,

ASBCD with optimal sampling generally achieves the highest test-
ing accuracy for the same training time.

5. RELATED WORK
The first line of research in modern optimization is randomized

block coordinate descent (RBCD) algorithms [11, 49, 25, 39, 36].
These algorithms exploit the block separability of regularization
function R(w). With separable coordinate blocks, such algorithms
only compute the gradient of F (w) with respect to a randomly
selected block at each iteration rather than the full gradient with
respect to all coordinates: they are faster than the full gradient des-
cent at each iteration [11, 49, 25, 39, 36]. However, such algorithms
still compute the exact partial gradient based on all the n compon-
ent functions per iteration, though accessing the entire component
functions is computationally more expensive when the training data
set has a larger number of instances [52].

Recently, an MRBCD algorithm was proposed for randomized
block coordinate descent using mini-batches [54]. At each itera-
tion, both a block of coordinates and a mini-batch of component
functions are sampled but there are multiple stages with two nes-
ted loops. For each iteration of the outer loop, the exact gradient
is computed once; while in the follow-up inner loop, gradient es-
timation is computed multiple times to help adjust the exact gradi-
ent. MRBCD has a linear rate of convergence for strongly con-
vex and smooth F (w) only when the batch size is “large enough”
although batches of larger sizes increase the per-iteration compu-
tational cost [54] (Theorem 4.2). Similar algorithms and theor-
etical results to those of MRBCD were also proposed [48, 18].
Chen and Gu further considered related but different sparsity con-
strained non-convex problems and studied stochastic optimization
algorithms with block coordinate gradient descent [6].

Our work departs from the related work in the above line of re-
search by attaining a linear convergence using optimally and non-
uniformly sampling of a single data instance at each of iterations.

The second line of research in modern optimization is proximal
gradient descent. In each iteration, a proximal operator is used in
the update, which can be viewed as a special case of splitting al-
gorithms [24, 5, 35]. Proximal gradient descent is computationally
expensive at each iteration, hence proximal stochastic gradient des-
cent is often used when the data set is large. At each iteration, only
one of the n component functions fi is sampled, or a subset of fi
are sampled, which is also known as mini-batch proximal stochastic
gradient [43]. Advantages for proximal stochastic gradient descent
are obvious: at each iteration much less computation of the gradi-
ent is needed in comparison with proximal gradient descent. How-
ever, due to the variance in estimating the gradient by stochastic
sampling, proximal stochastic gradient descent has a sublinear rate
of convergence even when P (w) is strongly convex and smooth.

To accelerate proximal stochastic gradient descent, variance re-
duction methods were proposed recently. Such accelerated al-
gorithms include stochastic average gradient (SAG) [38], stochastic
dual coordinate ascent (SDCA) [42], stochastic variance re-
duced gradient (SVRG) [15], semi-stochastic gradient descent
(S2GD) [19], permutable incremental gradient (Finito) [10], min-
imization by incremental surrogate optimization (MISO) [27], and
advanced stochastic gradient method (SAGA) [9]. There are also
some more recent extensions in this line of research, such as
proximal SDCA (ProxSDCA) [40], accelerated mini-batch SDCA
(ASDCA) [41], adaptive variant of SDCA (AdaSDCA) [7], ran-
domized dual coordinate ascent (Quartz) [34], mini-batch S2GD
(mS2GD) [17], and proximal SVRG (ProxSVRG) [50].

Besides, several studies show that non-uniform sampling can be
used to improve the rate of convergence of stochastic optimization



Table 2: Classification on KDD 2010: AUC comparison of algorithms for the same entire data passes. The boldfaced results with
symbol denote the highest AUC among all the algorithms for the same number of entire data passes.

Method #Data Passes = 2 #Data Passes = 4 #Data Passes = 6 #Data Passes = 8 #Data Passes = 10
Mean ±Std. Mean ±Std. Mean ±Std. Mean ±Std. Mean ±Std.

SGD 0.8341 ±0.0214 0.8343 ±0.0188 0.8348 ±0.0153 0.8350 ±0.0123 0.8351 ±0.0179
SBCD 0.8352 ±0.0278 0.8353 ±0.0264 0.8354 ±0.0315 0.8355 ±0.0288 0.8357 ±0.0352
SAGA 0.8360 ±0.0103 0.8401 ±0.0105 0.8481 ±0.0305 0.8528 ±0.0154 0.8542 ±0.0097
SVRG 0.8349 ±0.0111 0.8393 ±0.0146 0.8438 ±0.0178 0.8514 ±0.0097 0.8531 ±0.0087
MRBCD 0.8352 ±0.0301 0.8395 ±0.0232 0.8449 ±0.0270 0.8517 ±0.0162 0.8535 ±0.0183
ASBCD-U 0.8367 ±0.0153 0.8407 ±0.0127 0.8494 ±0.0212 0.8530 ±0.0165 0.8551 ±0.0168
ASBCD-O 0.8374 ±0.0112 0.8429 ±0.0133 0.8525 ±0.0109 0.8542 ±0.0098 0.8562 ±0.0076
*Std.: Standard Deviation

Table 3: Classification on KDD 2010: AUC comparison of algorithms for the same training time. The boldfaced results with symbol
denote the highest AUC among all the algorithms for the same training time.

Method Time = 600s Time = 1200s Time = 1800s Time = 2400s Time = 3000s
Mean ±Std. Mean ±Std. Mean ±Std. Mean ±Std. Mean ±Std.

SGD 0.8339 ±0.0163 0.8341 ±0.0153 0.8342 ±0.0146 0.8344 ±0.0154 0.8344 ±0.0112
SBCD 0.8348 ±0.0265 0.8350 ±0.0233 0.8350 ±0.0245 0.8352 ±0.0256 0.8353 ±0.0356
SAGA 0.8306 ±0.0223 0.8337 ±0.0241 0.8351 ±0.0153 0.8365 ±0.0151 0.8379 ±0.0099
SVRG 0.8293 ±0.0287 0.8320 ±0.0198 0.8340 ±0.0166 0.8353 ±0.0083 0.8368 ±0.0087
MRBCD 0.8309 ±0.0280 0.8339 ±0.0296 0.8356 ±0.0146 0.8370 ±0.0170 0.8390 ±0.0153
ASBCD-U 0.8311 ±0.0148 0.8346 ±0.0150 0.8367 ±0.0153 0.8385 ±0.0134 0.8415 ±0.0113
ASBCD-O 0.8314 ±0.0122 0.8351 ±0.0097 0.8371 ±0.0103 0.8396 ±0.0087 0.8432 ±0.0081
*Std.: Standard Deviation

algorithms [45, 31, 29, 50, 34, 53, 37, 33]. However, the proposed
sampling schemes in these studies cannot be directly applied to our
algorithm, because they are limited in at least one of the following
two aspects: (1) the algorithm does not apply to composite ob-
jectives with a non-differentiable function; (2) it does not support
randomized block coordinate descent.

6. CONCLUSION
Research on big data is increasingly important and common.

Training data mining and machine learning models often involve
minimizing empirical risk or maximizing likelihood over the train-
ing data set, especially in solving classification and regression
problems. Thus, big data research may rely on optimization al-
gorithms, such as proximal gradient descent algorithms. At each
iteration, proximal gradient descent algorithms have a much higher
computational cost due to updating gradients based on all the data
instances and features. Randomized block coordinate descent al-
gorithms are still computationally expensive at each iteration when
the data instance size is large. Therefore, we focused on stochastic
block coordinate descent that samples both data instances and fea-
tures at every iteration.

We proposed the ASBCD algorithm to accelerate stochastic
block coordinate descent. ASBCD incorporates the incrementally
averaged partial derivative into the stochastic partial derivative. For
smooth and strongly convex functions with non-differentiable reg-
ularization functions, ASBCD is able to achieve a linear rate of
convergence. The optimal sampling achieves a lower iteration com-
plexity for ASBCD. The empirical evaluation with both classifica-
tion and regression problems on four large-scale real data sets sup-
ported our theory.
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Figure 3: Convergence comparison of algorithms for the same number of entire data passes for classification and regression on three
data sets. In general, ASBCD with optimal sampling (O) converges fastest to the optimum for the same number of entire data passes.
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Figure 4: Convergence comparison of algorithms for the same training time for classification and regression on three data sets. In
general, ASBCD with optimal sampling (O) converges fastest to the optimum for the same training time.
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APPENDIX
A. PROOF OF THE MAIN THEORY

We provide the proof for the main theory delivered in Section 3.
Note that all the expectations are taken conditional on w(t−1) and
each φ

(t−1)
i unless otherwise stated. For brevity, we define

gi =
1

npi
∇fi(φ

(t)
i )−

1

npi
∇fi(φ

(t−1)
i ) +

1

n

n∑
k=1

∇fk(φ
(t−1)
k ).

(A.1)

Let us introduce several important lemmas. To begin with, since
Algorithm 1 leverages randomized coordinate blocks, the follow-
ing lemma is needed for taking the expectation of the squared gap
between the iterate w(t) and the optimal solution w∗ in (1.1) with
respect to the coordinate block index j.

LEMMA A.1. Suppose that Assumption 3.3 holds. Let j be a
coordinate block index. With gi defined in (A.1) and w∗ defined in
(1.1), based on Algorithm 1 we have

Ej [‖w(t) −w∗‖2] ≤
1

m

[
(m− 1)‖w(t−1) −w∗‖2

+‖w(t−1) − ηgi −w∗ + η∇F (w∗)‖2
]
.

Lemma A.1 takes the expectation of the squared gap between
the iterate w(t) and the optimal solution w∗ in (1.1) with respect to
the randomized coordinate block index. The obtained upper bound
does not have a randomized coordinate block index or the proximal
operator. Block separability and non-expansiveness of the prox-
imal operator are both exploited in deriving the upper bound. This
upper bound is used for deriving a linear rate of convergence for
Algorithm 1.

LEMMA A.2. Based on Algorithm 1 and as defined in (A.1), we
have Ei [gi] = ∇F (w(t−1)).

Lemma A.2 guarantees that gi is an unbiased gradient estimator of
F (w). The proof is strictly based on the definition of gi in (A.1).

LEMMA A.3. With gi defined in (A.1) and w∗ defined in (1.1),
based on Algorithm 1 and for all ζ > 0 we have

Ei
[
‖gi −∇F (w∗)‖2

]
≤ (1 + ζ)Ei

[∥∥∥ 1

npi
∇fi(w(t−1))

−
1

npi
∇fi(w∗)

∥∥∥2]− ζ‖∇F (w(t−1))−∇F (w∗)‖2

+ (1 + ζ−1)Ei
[∥∥∥ 1

npi
∇fi(φ

(t−1)
i )−

1

npi
∇fi(w∗)

∥∥∥2].
Lemma A.3 makes use of the property that E[‖x‖2] = E[‖x −

E[x]‖2] + ‖E [x]‖2 for all x and the property that ‖x+ y‖2 ≤
(1 + ζ) ‖x‖2 + (1 + ζ−1) ‖y‖2 for all x,y, and ζ > 0.

LEMMA A.4. Let f be strongly convex with the convexity para-
meter µ and its gradient be Lipschitz continuous with the constant
L. For all x and y, it holds that

〈∇f(y),x− y〉 ≤ f(x)− f(y)−
1

2(L− µ)
‖∇f(x)−∇f(y)‖2

−
µ

L− µ
〈∇f(x)−∇f(y),y − x〉 −

Lµ

2(L− µ)
‖y − x‖2 .

Lemma A.4 leverages properties of strongly convex functions
with Lipschitz continuous gradient.



LEMMA A.5. Algorithm 1 implies that

Ei
[
1

n

n∑
i=1

Li

npi
fi(φ

(t)
i )

]

=
1

n

n∑
i=1

Li

n
fi(w

(t−1)) +
1

n

n∑
i=1

(1− pi)Li
npi

fi(φ
(t−1)
i ).

Lemma A.5 is obtained according to the non-uniform sampling
of component functions in Algorithm 1.

REMARK A.6. Similar to Lemma A.5, we have

Ei
[
1

n

n∑
i=1

〈 Li
npi
∇fi(w∗),φ

(t)
i −w∗

〉]

=
1

n
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〈Li
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〉
+

1

n
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i=1
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npi

∇fi(w∗),φ
(t−1)
i −w∗

〉
. (A.2)

Now we develop the main theorem of bounding the rate of con-
vergence for Algorithm 1.

PROOF OF THEOREM 3.4. By applying Lemma A.1, A.2, and
Lemma A.3,

Ei,j
[
‖w(t) −w∗‖2

]
≤

1

m

[
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∥∥∥2]
+ η2(1 + ζ−1)Ei

[∥∥∥ 1

npi
∇fi(φ

(t−1)
i )−

1

npi
∇fi(w∗)

∥∥∥2]
− η2ζ‖∇F (w(t−1))−∇F (w∗)‖2

]
. (A.3)

Substituting x,y, and f with w∗,w(t−1), and fi in Lemma A.4,
and taking average on both sides of the inequality in Lemma A.4,
we obtain

− 2η〈∇F (w(t−1)),w(t−1) −w∗〉

≤
2η

n

n∑
i=1

Li − µ
Li

[fi(w
∗)− fi(w(t−1))]

−
η

n

n∑
i=1

1

Li
‖∇fi(w∗)−∇fi(w(t−1))‖2

−
2ηµ

n

n∑
i=1

1

Li
〈∇fi(w∗),w(t−1) −w∗〉 − ηµ‖w∗ −w(t−1)‖2.

(A.4)

Recall the property of any function f that is convex and has a
Lipschitz continuous gradient with the constant L: f(y) ≥ f(x)+
〈∇f(x),y−x〉+‖∇f(x)−∇f(y)‖2 /(2L) for all x and y [30]
(Theorem 2.1.5). Taking average on both sides, we have

Ei
[∥∥∥ 1

npi
∇fi(φ

(t−1)
i )−

1

npi
∇fi(w∗)

∥∥∥2]
≤

2

n

n∑
i=1

Li

npi

[
fi(φ

(t−1)
i )− fi(w∗)− 〈∇fi(w∗),φ

(t−1)
i −w∗〉

]
(A.5)

after substituting y,x, and f with φ
(t−1)
i ,w∗, and fi while re-

arranging terms.

Before further proceeding with the proof, we define

H(t) =
1

n

n∑
i=1

Li

npi

[
fi(φ

(t)
i )− fi(w∗)− 〈∇fi(w∗),

φ
(t)
i −w∗〉

]
+ κ‖w(t) −w∗‖2. (A.6)

Following the definition in (A.6), for all α > 0,

Ei,j [H(t)]− αH(t−1)

= Ei,j
[
1

n

n∑
i=1

Li

npi
fi(φ

(t)
i )

]
−

1

n

n∑
i=1

Li

npi
fi(w

∗)− Ei,j
[
1

n

n∑
i=1

Li

npi
·

〈∇fi(w∗),φ
(t)
i −w∗〉

]
+ Ei,j

[
κ‖w(t) −w∗‖2

]
− αH(t−1).

Recall the property of any strongly convex function f with
the convexity parameter µ that f(y) ≤ f(x) + 〈∇f(x),y −
x〉 + ‖∇f(x) − ∇f(y)‖2/(2µ) for all x and y [30] (The-
orem 2.1.10). We can obtain −‖∇fi(w(t−1)) − ∇fi(w∗)‖2 ≤
−2µ

[
fi(w

(t−1))− fi(w∗)− 〈∇fi(w∗),w(t−1) −w∗〉
]
.

Combining (A.3) with a positive constant κ, (A.4), and (A.5),
after simplifying terms, by Lemma A.5 and (A.2), with defining
LM = max

i
Li and pI = min

i
pi we have

Ei,j [H(t)]− αH(t−1) ≤
4∑
k=1

ckTk, (A.7)

where the four constant factors are

c1 =
κη

mn

(
η(1 + ζ)

npI
−

1

LM

)
,

c2 =
1

n

(
LM

n
−

2κη(LM − µ)
LMm

−
2βκη2µ

m

)
,

c3 = κ
(
1−

ηµ

m
− α

)
,

c4 =
LM

n2

(
2κη2(1 + ζ−1)

mpI
+

1− α
pI

− 1

)
,

and the four corresponding terms are

T1 =

n∑
i=1

‖∇fi(w(t−1))−∇fi(w∗)‖2,

T2 =

n∑
i=1

[
fi(w

(t−1))− fi(w∗)− 〈∇fi(w∗),w(t−1) −w∗〉
]
,

T3 = ‖w(t−1) −w∗‖2,

T4 =
n∑
i=1

[
fi(φ

(t−1)
i )− fi(w∗)− 〈∇fi(w∗),φ

(t−1)
i −w∗〉

]
.

There are four constant factors associated with four terms on the
right-hand side of (A.7). Among the four terms, obviously T1 ≥ 0
and T3 ≥ 0. By the convexity property of fi, we have T2 ≥ 0
and T4 ≥ 0. We choose η = max

i
npi/[2(nµ + Li)]. By set-

ting c1 = 0 with ζ = npI/(LMη) − 1 > 0, c2 = 0 with
κ = L2

Mm/
[
2nη(LM − µ + LMηµζ)

]
> 0, and c3 = 0 with

0 < α = 1− ηµ/m < 1, it can be verified that c4 ≤ 0.
With the aforementioned constant factor setting, Ei,j [H(t)] −

αH(t−1) ≤ 0, where the expectation is conditional on information
from the previous iteration t − 1. Taking expectation with this
previous iteration gives Ei,j [H(t)] ≤ αEi,j [H(t−1)]. By chaining
over t iteratively, Ei,j [H(t)] ≤ αtH(0). Since the sum of the first
three terms in (A.6) is non-negative by the convexity of F , we have
κ‖w(t)−w∗‖2 ≤ H(t). Together with the aforementioned results
by chaining over t, the proof is complete.
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