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ABSTRACT
In the information age, people can easily collect information
about the same set of entities from multiple sources, among
which conflicts are inevitable. This leads to an important
task, truth discovery, i.e., to identify true facts (truths) via
iteratively updating truths and source reliability. However,
the convergence to the truths is never discussed in existing
work, and thus there is no theoretical guarantee in the re-
sults of these truth discovery approaches. In contrast, in
this paper we propose a truth discovery approach with the-
oretical guarantee. We propose a randomized gaussian mix-
ture model (RGMM) to represent multi-source data, where
truths are model parameters. We incorporate source bias
which captures its reliability degree into RGMM formula-
tion. The truth discovery task is then modeled as seek-
ing the maximum likelihood estimate (MLE) of the truth-
s. Based on expectation-maximization (EM) techniques, we
propose population-based (i.e., on the limit of infinite data)
and sample-based (i.e., on a finite set of samples) solutions
for the MLE. Theoretically, we prove that both solutions are
contractive to an ϵ-ball around the MLE, under certain condi-
tions. Experimentally, we evaluate our method on both sim-
ulated and real-world datasets. Experimental results show
that our method achieves high accuracy in identifying truths
with convergence guarantee.

CCS Concepts
•Information systems → Data mining;
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1. INTRODUCTION
With the increase in our capabilities in collecting data

from the physical world, an important feature of the data
collection is its wide variety, i.e., data about the same objec-
t can be obtained from various sources. For example, cus-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

KDD ’16, August 13-17, 2016, San Francisco, CA, USA
c⃝ 2016 ACM. ISBN 978-1-4503-4232-2/16/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2939672.2939816

tomer information can be found from multiple databases in a
company, a patient’s medical records may be scattered at dif-
ferent hospitals, and product specifications are typically list-
ed at different websits (e.g., Amazon.com, ShopZilla.com).
Conflicts among information from different sources are com-
monly observed. Therefore, it is an important task to dis-
cover the truth (i.e., correct information) out of conflicting
multi-source data, which is referred to as truth discovery.
A trivial approach of accomplishing the truth discovery

task is to treat the average of the data as the truth. The
drawback of this simple averaging approach is that it treats
each source equally reliable, which is often violated in real
practice. Usually there exist sources with low-quality infor-
mation, such as faulty sensors that keep emanating erroneous
information, or spammers who propagate false information
on the Web. To address this challenge, researchers propose
a variety of approaches that infer both source reliability and
truths from multi-source data. These approaches, referred to
as truth discovery approaches, are developed based on heuris-
tic principles [3,5–8,13,16,24], optimization [9,10,14,27], or
probabilistic models [2, 4, 12, 15, 17, 19–21, 25, 26]. Despite
the difference in the techniques, the underlying principle is
the same: The sources which often provide truths should be
reliable, and the information from reliable sources usually
represent the truths. Based on this principle, existing truth
discovery approaches usually start with an initialization of
source reliability, and then conduct the following two steps
iteratively until convergence:

(i) Based on source reliability, obtain the truth by assign-
ing high weights to reliable sources in the aggregation
of sources’ inputs;

(ii) Based on the truths, calculate the reliability degree of
each source by measuring the deviation between truths
and sources’ inputs.

Although these algorithms differ in the specific ways to com-
pute truths or source reliability, they typically follow this
iterative procedure. However, the convergence of such an
iterative procedure has not been discussed in existing work,
and there is no theoretical guarantee in the results of existing
truth discovery approaches.
In contrast, in this paper we propose an effective truth dis-

covery approach with theoretical guarantee in convergence.
Compared with existing approaches, the proposed approach
follows the same principle that reliable sources provide truth-
s and truths are stated by reliable sources, but the major ad-
vantage of the proposed approach is its theoretical guarantee.
Specifically, we introduce the bias of each source which is a



random variable measuring its reliability degree. To repre-
sent multi-source data with various reliability degrees, we
propose a Randomized Gaussian Mixture Model (RGMM)
formulation, which consists of a gaussian mixture model [18]
with sources’ biases incorporated. We cast the truth dis-
covery problem as inferring a maximum likelihood estima-
tor (MLE) of the unknown parameters in RGMM. To solve
the problem, we derive both population-based and sample-
based Expectation-Maximization (EM) solutions [4] for the
limit of infinite data and a finite set of samples respective-
ly. We name the two approaches as population- and sample-
EMrgmm (i.e., EM for RGMM), respectively.

Theoretically, we prove that the output of the proposed
EMrgmm approaches converge to a MLE of the truth as the
number of sources increases. The proof is first derived for
population-EMrgmm. We first bound the distance between
the population-EMrgmm and the MLE. In Property 1, we
present the conditions under which population-EMrgmm es-
timate is contractive to the MLE, in an ϵ-ball around the
MLE. Then to prove that the output of sample-EMrgmm
converges to an ϵ-ball around MLE, we bound the deviation
from sample-EMrgmm to population-EMrgmm. To achieve
this goal, we introduce the definition of the covering num-
ber [22] of a metric space, and show that the distance be-
tween population-EMrgmm and sample-EMrgmm is upper
bounded by the number of sources (Corollary 1). Combining
these theoretical results and applying triangle inequality, we
prove that the distance between sample-EMrgmm and the
MLE is bounded, under certain conditions.

Experimentally, we evaluate the effectiveness of the pro-
posed sample-EMrgmm and verify the theoretical results on
several simulated data as well as three real-world application
datasets: Weather Forecast, Indoor Floorplan, and Stock
data. Experimental results show that the proposed sample-
EMrgmm approach are able to estimate truths from conflict-
ing multi-source data. Compared with the state-of-the-art
truth discovery algorithms, the proposed sample-EMrgmm
can achieve comparable performance. Moreover, the esti-
mate is asymptotically consistent to an ϵ-ball around the
MLE under the stated conditions.,

The remainder of the paper is organized as follows. We
discuss related work in Section 2. In Section 3, we mathemat-
ically formulate the task setting, introduce the randomized
Gaussian mixture model, and derive the closed form EM al-
gorithms for MLE. Then we present two important theoret-
ical results for the convergence of the proposed approaches
(Peoperties 1 and 2) in Section 4. The detailed proofs are
presented in Appendix. In Section 5, we report experimen-
tal results on both simulated and real-world datasets. We
conclude the paper in Section 6.

2. RELATED WORK
The problem of truth discovery has attracted much atten-

tion recently. People develop various approaches to extract
true information from multiple sources of conflicting data.
Initial studies [6,24] were motivated by the observation that
source reliability and truths are highly relevant–Truths are
often stated by many reliable sources and reliable sources
tend to tell truths more often. Based on this principle, ap-
proaches were developed to iteratively update source relia-
bility and true facts. Later, various approaches were further
developed to capture various factors that affect truth discov-
ery [3,5, 7, 8, 13,16].

In recent work, this principle is formulated as an optimiza-
tion framework [10]. The objective is to minimize the overal-
l distance between source observations and truths in which
sources are weighted by their reliability degrees. Then this
framework was extended to handle data with long-tail dis-
tributions by calculating the confidence of source reliability
estimates [9]. In [27], an optimization framework was devel-
oped based on min-max entropy. The solutions to these op-
timization formulations usually involve an iterative update
of truths and source reliability as well.
In addition, probabilistic approaches [2,4,15,19–21,25,26]

were developed to tackle the truth discovery task. The basic
idea is to formulate multi-source data as certain mixture of
distributions and incorporate source reliability as some ran-
dom variable into the probabilistic models. The approaches
differ in the way of selecting proper distributions and cap-
ture source reliability to handle various scenarios in truth
discovery, such as the existence of multiple truths, various d-
ifficulty levels of the task, and various data types. To obtain
the truths, these approaches try to maximize likelihood or
posterior distributions, which leads to iteratively updates in
model parameters and truth inference. In particular, Dawid
& Skene were the first to develop a maximum likelihood for-
mulation and an expectation-maximization based approach
to solve the problem. This approach was then adapted to
social sensing scenarios in [19]. In [20], the authors develope-
d a maximum likelihood estimator for source reliability and
approximately quantified confidence in its estimation based
on an asymptotic Cramer-Rao lower bound, but the conver-
gence to the truth is not analyzed and cannot be guaranteed.
In summary, although the topic of truth discovery has been

widely studied and most approaches achieve success in real-
world applications, there is no theoretical guarantee that the
results of these approaches converge to the truths. In this
paper, we propose a novel truth discovery approach which
can not only achieve comparable effectiveness in identifying
the truths but also has theoretical guaranteed in the conver-
gency to the truths.

3. METHODOLOGY
In this section, we mathematically formulate the truth

discovery task, propose a randomized gaussian mixture
model to represent multi-source data with various relia-
bility degrees, derive both population-based and sample-
based expectation-maximization solutions (i.e., population-
EMrgmm and sample-EMrgmm), and finally present the
complete algorithm of sample-EMrgmm.

3.1 Problem Formulation
We first introduce the notations that will be used through-

out the paper and then state the target problem.
Input. Consider a set of entities N := {n}Nn=1 that we are

interested in, and there are S := {s}S1 sources which provide
information about all N entities. For the s-th source, denote
its claims on N entities as Xs = (xs

1, · · · , xs
N ), where xs

n

represents its claim on the n-th entity. Then, X = {Xs}S1
represents the whole set of claims over the sources S .
Output. The truths for all entities are denoted as µ =

(µ1, · · · , µN ), which is unknown a priori. Let’s also denote
the estimator of the truth obtained from a truth discovery
approach as µ̂.
Truth Discovery Task. The truth discovery task is for-

mally defined as follows: Given the data collection X , the



goal of a truth discovery method is to obtain an estimate µ̂
for all entities’ truths as close to µ as possible.

We summarize the notations in Table 1. Some of the no-
tations will be introduced later in the paper.

Table 1: Notations
Notation Definition

N the set of entities
S the set of sources
µ the vector of entities’ truths
µ∗ the maximum likelihood estimator of µ
µ̂ the estimator of truths
ηs the bias for the source s
Xs the data collected from source s
X the whole claims over S sources
σ2 the variance of data collection in the model

3.2 Randomized Gaussian Mixture Model
Now we propose a probabilistic model with parameters µ

whose estimate will be inferred via maximum likelihood es-
timator technique. In truth discovery, different sources are
treated differently depending on the quality of their data.
To do this, we assume that the reliability of the s-th source
is captured by a random variable ηs that measures bias (i.e.,
deviation from the truth). The smaller absolute value the
bias ηs, the more reliable the s-th source. Considering all
the S sources together, their reliability degrees {ηs}S1 can be
assumed to follow certain distributions, for example, a uni-
form distribution ηs ∼ Uniform(−C,C)N . This distribution
models the overall quality of the collection of sources.

For the s-th source, we assume that the claims made by
this source follow a multi-variate gaussian distribution with
variance σ2IN , where IN is an identity matrix of size n. This
assumption is typically adopted in many existing truth dis-
covery work [9,10,27]. The mean of the gaussian distribution
is µ − ηs in which µ is the truth and ηs is the source bias.
Therefore, a more reliable source’s mean is closer to the truth
and thus its claims are more likely to be close to the truth.
With these notations, we can write the distribution of the
claims made by the s-th source as:

Xs|ηs ∼ Normal(µ− ηs, σ2IN ). (1)

We further model the whole data collection using the follow-
ing mixture model [23]:

pµ(X) =
1

S

S∑
s=1

Normal(µ− ηs, σ2IN ), (2)

where we assume equal weights among components. Differ-
ent from traditional gaussian mixture model with fixed mean
in each component, the proposed model’s mean is random be-
cause we incorporate the random variables ηs as the source
bias. Thus, we name the proposed model as Randomized
Gaussian Mixture Model (RGMM). We introduce a latent
variable Y ∈ {s}S1 as a source indicator, which is also an in-
dicator of the underlying mixture component. Namely, the
claims from the s-th component of RGMM is denoted as:

X|Y = s ∼ Normal(µ− ηs, σ2IN ). (3)

We assume that the pair (X, Y ) are random variables in
the sample spaces X×Y. Based on the RGMM, we formulate
the problem of truth discovery as the task of estimating the
model parameter µ. Specifically, the objective is to obtain

the estimate of µ which maximizes the likelihood of observ-
ing the multi-source input. We define µ∗ as the maximum
likelihood estimator of µ in the proposed RGMM formula-
tion. In the following sections, we propose effective solutions
to estimate µ∗ and then demonstrate the approaches’ con-
vergence guarantee in Section 4.

3.3 EM Solutions for RGMM
The objective of the proposed approach is to obtain an es-

timate of the unknown parameter µ∗ which maximizes the
likelihood of RGMM on the data. An effective approach
for deriving MLE is expectation-maximization (EM) method.
We develop EM solutions for two versions of MLE estimates
in this task: population-based MLE (assuming the limit in-
finite data) and sample-based MLE (assuming a finite set of
samples). We name these solutions as population- and sam-
ple- EMrgmm, respectively. Data is finite in real practice, so
we should use sample-EMrgmm to identify entities’ truths,
but the introduction of population-EMrgmm enables us to
conduct the convergence analysis for both solutions. In this
subsection, we first introduce the general EM procedure, and
then derive the EM updates of both population- and sample-
EMrgmm.
First, let us briefly review the EM algorithm. Given the

lower bounds on the log likelihood Q(·|·), EM algorithm suc-
cessively maximizes the lower bound and then reevaluates
the lower bound at the new parameter value. The update
procedure is as follows.
EM updates: Given µt−1 obtained at the (t− 1)-th iter-

ation, the t-th iteration of EM algorithm can be summarized
in the following two steps:

• E-Step. Calculate the lower bound of the log likelihood
Q(·|µt−1).

• M-Step. Compute the maximizer as follows:

µt = argmax
µ′∈Ω

Q(µ′|µt−1).

An EM-based method iteratively conduct these steps until
some conditions are satisfied. Next, we introduce both the
population- and sample- EMrgmm.
population-EMrgmm. When deriving the E-step and M-

step for population-based MLE of RGMM, we assume that
there is an infinite set of samples. The population-based
Q-function Q(·|µ) takes the form that

Q(µ′|µ) =
∫
X

(∫
Y fµ(y|X) log pµ′(X, y)dy

)
gµ(X)dX, (4)

where fµ(y|X) denotes the conditional density of Y given X
and gµ(X) is the density function of the observed variable
X. The population-based EM operator M : RN → RN is
defined as follows:

M(µ) := arg max
µ′∈RN

Q(µ′|µ). (5)

M(·) is to find the maximizer of the Q-function given the
parameters µ obtained in previous step.
sample-EMrgmm. sample-EMrgmm is derived on a finite

set of the claims, i.e., X = {Xs}S1 . We assume that each
sample given by every source is drawn i.i.d. from the mix-
ture density Eq. (2). Under this assumption, we define the
sample-based Q-function as QS , which is shown as follows:

QS(µ
′|µ) = 1

S

S∑
s=1

(
S∑
s′

P
[
y = s′|Xs] log pµ′(Xs, y)

)
. (6)



P [y = s′|Xs] is the probability that a sample X belongs to
source s′, and its value is defined by the following function:

P [y = s|X] := e
−

∥X−µ−ηs∥22
2σ2

(
S∑

s′=1

e
−

∥X−µ−ηs′ ∥22
2σ2

)−1

. (7)

To simplify the notation, we denote Eq. (7) as ωµ(X,ηs).
Substituting ωµ(X,ηs) (Eq. (7)) into Eq. (6) and ignoring
terms that do not contain µ, we show that the sample-based
function QS(µ

′|µ) takes the form:

QS(µ
′|µ) = − 1

S

S∑
s=1

S∑
s′=1

ωµ(X
s,ηs′)

∥Xs − µ′ − ηs′∥22
2σ2

. (8)

We denote the sample-based EM operator as Mn : RN →
RN , which is to maximize the sample-based Q-function.
Namely, MS(µ) := argmaxµ′∈RN QS(µ

′|µ). According to
Eq. (8), we have that

MS(µ) =
1

S

S∑
s=1

S∑
s′=1

ωµ(X
s,ηs′)(Xs − ηs′). (9)

Moreover, Eq. (9) implies that M(µ) = E [ω(X,η)(X − η)],
where the expectation is taken over X × η.

3.4 Sample-EMrgmm Algorithm
As discussed, sample-EMrgmm which deals with finite

samples, is typically adopted in real practice. We summarize
this algorithm in Algorithm 1. We will show its performance
on both simulated and real-world datasets in Section 5.

Algorithm 1 sample-EMrgmm

Input: Entities N = {n}N1 , Sources S = {s}S1 , and data

collection X = {xs
n}S,Ns=1,n=1,

Output: Truth estimates µ̂

1: for entity n (n = 1, · · · , N) do
2: Calculate its variance σ̂2

n over S sources;
3: Initialize µold

n using the mean of claims over sources;
4: end for
5: Estimate model variance: σ̂2 = 1

N

∑N
n=1 σ̂

2
n;

6: Estimate upper bound of biases C using the maximum
absolute value of X ;

7: while convergence criterion is not satisfied do
8: For each source s, generate ηs ∼ Uniform(−C,C)N ;
9: Update truth estimator according to Eq. (9):

µnew = Mn(µ
old);

10: end while
11: return µ̂ = µnew

4. THEORETICAL ANALYSIS
In this section, we theoretically present convergence analy-

sis for the proposed solutions: population- and sample- EM-
rgmm. The outline of this section is: (1) In Property 1, we
first provide conditions under which the distance between
the population-EMrgmm’s result and the MLE is bounded;
(2) Based on the concept of covering number of a metric
space, we bound the distance between the result of popula-
tion- and that of sample-EMrgmm (Corollary 1); (3) Based
on Property 1 and Corollary 1, applying triangle inequality,
the error between the sample-EMrgmm’s result and MLE is
upper bounded by the number of samples (Property 2).

Convergence of population-EMrgmm

Let’s first introduce the convergence property of the popula-
tion-EMrgmm. Recall that µ∗ represents the maximizer of
the population likelihood. [1] introduces the self-consistency
property for the maximum likelihood estimator, that is,

µ∗ = argmax
µ′

Q(µ′|µ∗). (10)

Eq. (10) implies that the maximum likelihood estimator
should maximize the population-based Q-function. Combin-
ing with Eq. (5), it is obvious that µ∗ = M(µ∗). For the
proposed RGMM (Eq. (2)), we have the following property.

Property 1. Given the RGMM with a sufficiently small
bias-to-mean ratio C

∥µ∗∥2
and a sufficiently large signal-to-

noise ratio ∥µ∗∥2
σ2 , there is a universal constant c > 0 and a

constant λ ∈ (0, 1) with λ ≤ exp(−c ∥µ∗∥2
σ2 ), such that

∥M(µ)− µ∗∥22 ≤ λ∥µ∗ − µ∥22, (11)

holds for all µ if ∥µ− µ∗∥2 ≤ ∥µ∗∥2
4

.

Proof. Please refer to §A for a detailed proof.

The idea of the proof for Property 1 is adopted from [1].
However, two major differences are: (1) we incorporate a
random variable η for each latent component whose mean
share the same sign, and (2) we consider arbitrary number of
latent components more than 2. Both differences make the
proof more complicated comparing with Corollary 1 in [1].
The detailed proof is deferred in Appendix A.

Property 1 establishes the conditions under which the con-
vergence of the population-EMrgmm M(µ) is guaranteed.
Namely, the proposed M(µ) is contractive over a small ball
around µ∗, a maximum likelihood estimator of the truths.
Given an initial µ0, an immediate result from Property 1 is:

∥µt − µ∗∥22 = ∥M(µt−1)− µ∗∥22 ≤ λ∥µt−1 − µ∗∥22
≤ λ∥M(µt−2)− µ∗∥22 ≤ · · · ≤ λt∥µ0 − µ∗∥22.

(12)

Eq. (12) implies that M(µ) is linear convergence. Moreover,
It shows that given any initialization, the proposed M(µ) is
able to modify it as the iteration increases.

Convergence of sample-EMrgmm

To prove the convergence property of the sample-EMrgmm,
we first measure the deviation of its result from that of pop-
ulation-EMrgmm. As the covering number is used in the
proof, we formally introduce its definition from [22].

Definition 1. Let G be a subset of a metric space. ∀ϵ >
0, the covering number N(G, ϵ) is defined to be the minimal
integer n ∈ N such that these n balls with radius ϵ cover G.

Based on Definition 1, the difference between population-
EMrgmm (M(µ)) and sample-EMrgmm (Mn(µ)) is upper
bounded as follows.

Corollary 1. Given the population- and sample- based
EM operator Mn and M , there exists a constant cδ such that

sup
µ∈Ω

∥Mn(µ)−M(µ)∥2 ≤ cδ,N(Ω,δ)S
− 1

2 (13)

holds with probability at least 1−δ, where Ω is the parameter
space.

Proof. Please refer to §B for a detailed proof.



Based on Property 1 and Corollary 1, we can bound the
distance between the result of sample-EMrgmm Mn(µ) and
the MLE µ∗, which is stated in the following property.

Property 2. Under the conditions of Property 1, ∀µ0

such that ∥µ0 − µ∗∥2 ≤ r, if there are enough sources, then
{µt}∞t=0 obtained by the sample-EM algorithm satisfies that

∥µt − µ∗∥2 ≤ λt∥µ0 − µ∗∥2 +
1

1− λ
cδ,N(Ω,δ)S

− 1
2 (14)

holds with probability of at least 1− δ, where λ ∈ (0, 1).

Proof. Please refer to §C for a detailed proof.

After conduct enough iterations, Eq. (14) shows that the
main component of the upper bound is the second terms (i.e.,

1
1−λ

cδ,N(Ω,δ)S
− 1

2 ). Namely, Property 2 states that the per-
formance of the proposed sample-EMrgmm is upper bound-
ed by Ω(S−1/2). Intuitively, in truth discovery tasks the
more the sources, the better the performance of methods.
In Property 2, we theoretically present that the convergence
rate of the sample-EMrgmm is Ω(S−1/2).

5. EXPERIMENTS
Note that, only finite number of samples can be obtained

in real-world applications, which fits the sample-Emrgmm
setting. Therefore, all experiments are conducted using
sample-EMrgmm1. In this section, we test the sample-
EMrgmm on both simulated and real-world data sets. The
experimental results show the effectiveness of the proposed
sample-EMrgmm in identifying truths as well as its conver-
gence. We first introduce baselines and performance mea-
sures in Subsections 5.1 and 5.2, respectively. Experimental
results on simulated data are presented in Subsection 5.3.
In Subsection 5.4, we show experimental results on three
real-world application datasets: Weather Forecast, Indoor
Floorplan, and Stock Data.

5.1 Baselines
A variety of truth discovery methods have been developed

to identify each object’s truth. As we consider applications
of continuous data in this paper, we compare the sample-
EMrgmm with three state-of-the-art truth discovery meth-
ods CRH, CATD, GTM, and two naive methods: Mean and
Median. Details of the baselines are shown as follows:

• CRH: In [10], truth discovery task is formulated as an
optimization problem, seeking the optimal truth esti-
mators and weights to minimize the weighted distance
between claims and the truths. CRH is proposed to
iteratively update the truths and source weights.

• CATD: CATD [9] is a statistical method that has been
proposed for long-tail phenomenon in truth discov-
ery, where confidence interval is incorporated in source
weight estimation.

• GTM: [25] proposes a probabilistic graphical model
based method to solve the truth discovery task. In
their framework, source reliability and truths are mod-
el parameters to estimate.

• Mean: The average of claims provided by multiple
sources is treated as the final estimator of the truth.

• Median: The median of claims provided by multiple
sources is defined as the final estimator of the truth.

1We will use RGMM and sample-EMrgmm interchangeably
in the experiment section

5.2 Performance Measures
In the experiments, we have continuous input obtained

from multiple sources. Although the ground truths are avail-
able, we conduct all methods in an unsupervised manner and
the ground truths will only be used in evaluation. To evalu-
ate the performance of sample-EMrgmm as well as baselines,
we adopt the following measures:

• MAE: It measures the mean of absolute error between
the output of methods and the ground truths. As L1-
norm is applied, MAE penalizes more on small errors.

• RMSE: It measures the root of mean squared error
between output and groundtruth. RMSE penalizes
more on big errors because of the involved L2-norm.

• ErrorRate(ϵ): It is defined as the percentage of the
estimated truths falling outside an ϵ-ball2 of the ground
truth.

Note that a lower measure value means that the truth esti-
mates are closer to the ground truths. Thus, for all measures,
the lower the value, the better the method’s performance.

5.3 Simulated Data
The advantage of using simulated data is that we can sim-

ulate different truth discovery scenarios to compare the per-
formance of the proposed sample-EMrgmm with that of the
baselines. In this section, we first introduce the procedure of
generating simulated data. Then, we show the performance
of the sample-EMrgmm as well as the comparison with base-
lines in terms of MAE, RMSE, and ErrorRate(ϵ).
Data Generation. In each experiment, we generate

N = 200 entities and S = 100 sources. For each source,
its bias (ηs) is drawn i.i.d. from a distribution F . We as-
sume that the ground truth for all entities are 0s. Thus,
the s-th component (i.e., source) of the mixture model fol-
lows a multivariate normal distribution, Normal(−ηs, σ2IN ).
To generate the sample of claims {Xs}S1 , we first random-
ly generate a source index s from [1, · · · , S], and then Xs

is drawn from Normal(−ηs, σ2IN ), where σ2 = 1. We use
MAE and RMSE, and Error Rate (0.1) for evaluation. We
simulate three different scenarios involving different distri-
butions of source biases: Uniform, Normal, and Student′s t-
distribution, and then evaluate the performance of all truth
discovery methods.
Scenario 1: ηs ∼ Uniform(−c, c). In this scenario,

sources’ biases are drawn from a uniform distribution with
c = 2. The source reliability degrees are uniformly distribut-
ed. We report the results on experiments with different
source number S = {10, 20, · · · , 100} in terms of all methods
in Figure 1. In Figure 1, the solid and dark line represents

the value of function f(S) = S− 1
2 , which is the dominat-

ed term in upper bound of the proposed sample-EMrgmm
(Eq. (14)). From Figures 1(a), 1(b) and 1(c), we can see
that the convergence of the proposed sample-EMrgmm is

similar to the S− 1
2 , which confirms the result in Property 2.

Moreover, we can see that the performance of the proposed
RGMM is better when comparing with baselines in terms of
RMSE and Error Rate. It means that most of truth esti-
mates from the sample-EMrgmm have smaller errors com-
pared with that of baselines. For MAE, all truth discovery
methods have the same performance.
Scenario 2: ηs ∼ Normal(0, δ2). In this scenario, sources’

biases are drawn from a Normal distribution with variance

2ϵ is chosen based on the scale of the multi-source data.
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Figure 1: Simulated data on Scenario 1: Performance with respect to the Number of Sources (S).

20 40 60 80 100
0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of Sources

M
A

E

 

 

CRH

CATD

GTM

Mean

Median

Fitting

RGMM

(a) MAE vs. S

20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

Number of Sources

R
M

S
E

 

 

CRH

CATD

GTM

Mean

Median

Fitting

RGMM

(b) RMSE vs. S

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

Number of Sources

E
rr

o
r 

R
at

e

 

 

CRH

CATD

GTM

Mean

Median

Fitting

RGMM

(c) Error Rate(.1) vs. S

Figure 2: Simulated data on Scenario 2: Performance with respect to the Number of Sources (S).
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Figure 3: Simulated data on Scenario 3: Performance with respect to the Number of Sources (S).

δ2 = 0.5. Based on three-sigma rule of thumb, sources biases
fall into the interval [− 3√

2
, 3√

2
] with probability of 99.73%.

Meanwhile, as the variance of the normal distribution is s-
mall, there are many samples closer to the mean 0. There-
fore, there are many reliable sources than unreliable sources.
The results are shown in Figure 2. The convergence perfor-
mance of the sample-EMrgmm with respect to the number
of sources is similar to that in Scenario 1.

Scenario 3: ηs ∼ Student′s t-(ν). In this scenario,
sources’ biases are drawn from a student’s t-distribution with
freedom ν = 2. Compared with previous scenarios, Student′s
t-distribution has heavier tails, i.e., it is more prone to pro-
ducing values that fall far from its mean 0. Consequently,
there are more unreliable sources. The results in terms of
MAE, RMSE, and Error Rate(.1) are shown in Figure 3.

Result Analysis. Comparing the performance on Sce-
narios 1 ∼ 3, we can see that all methods perform best in
Scenario 3 and worst in Scenario 3. In Property 1, the condi-
tions show that the performance is better if the upper bound
of data C is smaller and the variance σ2 is larger. In Sce-

nario 1, Ĉ = 6.3476 and σ̂2 = 2.4502, while Ĉ = 5.74, and
σ̂2 = 2.0886 in Scenario 2. As student t-distribution is long-
tail, there are some sources which have very large bias. Thus,
in Scenario 3, the upper bound of original simulated data is
161.4553. The claims provided these sources can be treat-

ed as outliers. After removing them, we have Ĉ = 19.9335
and σ̂2 = 5.8458. Based on Property 11, the performance in
Scenario 2 should be the best, as shown in Figure 2.

The convergence rate of the sample-EMrgmm is Ω(S− 1
2 )

as shown in the Section 4. Experimentally, the convergence

rate in Scenarios 1 and 2 is nicely fit to Ω(S− 1
2 ), as shown

in Figures 1 and 2. In Scenario 3, the convergence is not as
clear as that in Scenarios 1 and 2, as there are more outliers.

5.4 Real-World Data
Data Description. We test the proposed sample-

RGMM and baselines on real-world data. The detailed de-
scription of each dataset and their tasks are shown as follows:

• Weather Forecast [10]: Temperature forecasts informa-
tion for 88 cities in US are collected from three websites:
HAM weather3, Wundergound4, and World Weather
Online5. Besides, the real temperature for all cities
are also crawled as ground truths for evaluation. The
goal is to estimate the true temperature for each city
from the conflicting data provided by different sources.

• Indoor Floorplan [9]: An Andriod App is designed for
smart phone users to collect their estimates of hallway

3http://www.hamweather.com
4http://www.wunderground.com
5http://www.worldweatheronline.com



distance. There are totally 308 claims from 44 users on
7 indoor hallways. The ground truths are obtained via
manually measuring the hallways by tape. The goal is
to estimate the distance of indoor hallways from the
data provided by a crowd of users.

• Stock Data: The stock data in [11] contains the price
information for 1000 stocks from 55 sources over 21
days. To fit our scenarios, we preprocess the data and
obtain a full dense dataset which contains the price
information of 300 stocks from 36 sources over 19 days.
In this task, we only focus on the open price, so the
goal is to estimate the true open price for each stock.

Note that we have a different task setting compared with
[9,10] on the real-world datasets reported in this paper. We
consider a scenario where all entities are claimed by all
sources while CATD [9] and CRH [10] were applied to en-
tities that are observed by a subset of sources. To fit the full
observation scenario, we preprocess the data used in [9,10]
by deleting those entities which have not been claimed by all
sources. In addition, our model in this paper tackles contin-
uous data only. Therefore, we select continuous attributes in
the Weather Forecast dataset, and the ”Price” attribute (i.e.,
a continuous attribute) in the Stock dataset ([11]), which al-
so differs from the setting in [10] (i.e., using both categorical
and continuous attributes). The statistics of three real-world
datasets are summarized in Table 2.

Table 2: Statistics of real-world datasets
Dataset sources objects claims

Weather Forecast 30 88 3, 344
Indoor Floorplan 44 7 308

Stock Data 36 300 ∗ 19 108, 000 ∗ 19

Result Analysis. On the Weather Forecast data, we re-
duce the scale of the observations in preprocess step. For
example, the original 77 Fahrenheit is changed to .77. We
evaluate all methods on different scenarios in which the num-
ber of sources increases from 4 to 10 by the stepsize of 2. In
Figure 4, we report the experimental results in terms ofMAE
and RMSE. We can see that the performance of the proposed
RGMM improves as the number of sources increases. When
the number of sources is relatively small, the performance of
the proposed RGMM is worse than baselines. however, giv-
en a plenty of sources, RGMM converges to other baselines.
The experimental results with respect to Error Rate(ϵ) is p-
resented in Table 3. Table 3 shows that the performance of
RGMM is comparable to that of baselines.
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Figure 4: Weather Forecast dataset: Performance
with respect to the Number of Sources (S).

On Indoor Floorplan dataset, we test all truth discovery
methods on different scenarios where the number of sources
increases from 6 to 44 by the stepsize of 1. In each scenario,
we randomly choose the pre-fixed number of sources. To

Table 3: Error Rate(ϵ) on Weather Forecasts

Method
Error Rate(ϵ)

.05 .06 .07 .08 .09 .10

RGMM .2159 .1591 .1477 .1023 .0795 .0455
CRH .2045 .1477 .1023 .0682 .0568 .0341
CATD .4205 .3523 .2955 .2273 .1705 .1364
GTM .4091 .3409 .2386 .1932 .1591 .1023
Mean .2045 .1477 .1023 .0682 .0568 .0341
Median .2045 .1477 .1023 .0682 .0455 .0341
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Figure 5: Indoor Floorplan dataset: Performance
with respect to the Number of Sources (S).

reduce the randomness, we repeat experiments 20 times and
report the average of evaluation measures. The performance
comparison between the proposed RGMM and baselines in
terms of MAE and RMSE are presented in Figures 5(a) and
5(b), respectively. Note that the decrease rate is not exactly
fit to the exponential function with power to − 1

2
. For both

measures, although the performance of all methods decrease
as the number of sources increases, the proposed RGMM is
the best. Namely, the truth estimates obtained by RGMM is
closer to the truths. We also report experimental results in
terms of Error Rate(ϵ). We change ϵ from .5 to 1.0 and show
the results in Table 4. We can see that the performance of
the proposed RGMM is the best on all scenarios exept ϵ = .6.

Table 4: Error Rate(ϵ) on Indoor Floorplan

Method
Error Rate(ϵ)

.5 .6 .7 .8 0.9 1.0

RGMM .5714 .4286 .2857 .2857 .1429 .1429
CRH .4286 .4286 .2857 .2857 .2857 .2857
CATD .4286 .4286 .2857 .2857 .2857 .2857
GTM .4286 .2857 .2857 .2857 .2857 .2857
Mean .5714 .4286 .4286 .2857 .2857 .2857
Median .7143 .2857 .2857 .2857 .1429 .1429

On Stock data, we follow the similar experiment design.
We report the results in terms of MAE and RMSE measures
in Table 5. Table 5 shows that the performance of RGMM
comparable with baselines. We also test the performance
with respect to the number of sources. Due to the page limit,
we only show the results on the data collected on day 1 in
Figure 6. To better confirm the theoretical results obtained
in Section 4, we report the convergence of the RGMM with
respect to the number of sources on all days’ Stock data in
Figure 7. Each blue line represents a experiment conducted
in a single day Stock data. We also fit each line into a

function a ∗ S− 1
2 + c where a and c are coefficients. The

red line is plot using the average of a and c over 19 days.
From Figures 6 and 7, we can see that the convergence of

the RGMM’s performance is indeed Ω(S− 1
2 ), which perfectly

confirms our theoretical results.



Table 5: Performance comparison on Stock data

Data
MAE RMSE

RGMM CRH CATD GTM Mean Median RGMM CRH CATD GTM Mean Median

Day1 .0162 .0144 .0145 .0145 .0138 .0145 .0200 .0175 .0175 .0175 .0170 .0175
Day2 .0161 .0149 .0149 .0149 .0144 .0150 .0200 .0199 .0199 .0199 .0189 .0199
Day3 .0155 .0238 .0238 .0238 .0225 .0238 .0200 .0303 .0303 .0303 .0288 .0303
Day4 .0175 .0221 .0222 .0222 .0220 .0222 .0245 .0287 .0287 .0287 .0279 .0288
Day5 .0227 .0234 .0235 .0235 .0231 .0235 .0316 .0316 .0316 .0316 .0304 .0316
Day6 .0308 .0240 .0240 .0240 .0233 .0240 .0337 .0337 .0337 .0337 .0330 .0337
Day7 .0351 .0273 .0273 .0273 .0268 .0273 .0469 .0399 .0400 .0400 .0393 .0400
Day8 .0394 .0303 .0304 .0304 .0296 .0304 .0414 .0414 .0414 .0414 .0407 .0414
Day9 .0505 .0370 .0370 .0370 .0365 .0370 .0525 .0524 .0525 .0525 .0520 .0525
Day10 .0522 .0402 .0403 .0403 .0397 .0403 .0532 .0548 .0548 .0548 .0542 .0548
Day11 .0543 .0425 .0427 .0427 .0412 .0427 .0663 .0558 .0560 .0560 .0545 .0560
Day12 .0479 .0436 .0437 .0437 .0419 .0437 .0608 .0561 .0562 .0562 .0546 .0562
Day13 .0576 .0461 .0462 .0462 .0440 .0462 .0600 .0600 .0601 .0600 .0585 .0600
Day14 .0472 .0438 .0439 .0439 .0422 .0439 .0612 .0585 .0585 .0585 .0575 .0586
Day15 .0506 .0453 .0454 .0454 .0439 .0454 .0600 .0598 .0598 .0598 .0590 .0598
Day16 .0539 .0500 .0501 .0501 .0486 .0501 .0652 .0642 .0643 .0642 .0632 .0643
Day17 .0605 .0544 .0546 .0545 .0525 .0546 .0723 .0703 .0705 .0705 .0690 .0705
Day18 .0761 .0659 .0660 .0660 .0645 .0660 .0856 .0849 .0849 .0849 .0833 .0850
Day19 .0794 .0678 .0679 .0678 .0666 .0679 .0901 .0856 .0857 .0857 .0842 .0857
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Figure 6: Stock data on Day 1: Performance with
respect to the number of sources (S).
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Figure 7: Convergence w.r.t. the number of sources
on all Stock data

In summary, the experimental results on both simulat-
ed and real-world datasets demonstrate that: (1) the per-
formance of the proposed sample-EMrgmm is comparable
compared with several state-of-the-art methods, and (2) the

convergence rate of its performance is Ω(S− 1
2 ) as proved in

Section 4 (Property 2).

6. CONCLUSIONS
With the increasing possibilities to collect data from mul-

tiple sources in the real world, it is critical to identify true
facts from conflicting data. To solve this problem, many al-
gorithms were developed based on heuristic principles, opti-
mizations, or probabilistic model. However, in existing liter-
ature on truth discovery, the convergence analysis is missing,

and thus there is no theoretical guarantee that the results
of these algorithms converge to the truths. In this paper,
we proposed an effective truth discovery approach with the-
oretical guarantee. We first introduced the randomized bi-
ases of sources to measure their reliability degrees. Then
we proposed a novel model (RGMM) to represent multi-
source data with various reliability degrees, which consists
of a Gaussian mixture model with the randomized biases in-
corporated. The parameters of interests in this model are
the truths to be identified. We then derive both population-
and sample- EMrgmm to the MLE of the truth parameter of
RGMM. Theoretically, we prove that population-EMrgmm
converges in probability to an ϵ-ball around the MLE with
the increasing number of sources, under certain condition-
s. Moreover, we prove that sample-EMrgmm also converges
to the ϵ-ball around the MLE with more iterations. In the
experiments, we evaluate the effectiveness of the proposed
sample-EMrgmm on both simulated and real-world dataset-
s. Experimental results demonstrate that the proposed sam-
ple-EMrgmm is able to identify reliable information from
multi-source data, and the estimator converges to an ϵ-ball
around the MLE under the stated conditions.
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APPENDIX
A. PROOF OF PROPERTY 1

We follow the similar procedure of the proof in [1]: Decom-
pose M(µ)−µ∗ into two separate functions: E[Γ1

δ(X)] and
Γ2
δ(X), and then bound Γ1

δ(X) and Γ2
δ(X).

Define µu = µ∗ + δ∆ where ∆ := µ − µ∗, ∀δ ∈ [0, 1].
Before applying Taylor’s property to the function µ →
ωµ(X,η), we first take a look at its derivative and upper

bound it as follows:
∂ωs

µ(X,η)

∂µ
≤ α

exp(
⟨X,X⟩+⟨µδ,µδ⟩

σ2 )

exp(
2⟨X,µδ⟩

σ2 )
where

α , 2C
Sσ2 e

C2

2σ2 . We first apply Taylor property to the function
µ → ωµ(X,η) and take the expectation over X. Combining
with the upper bound, we have that

E [(ωµ(X,η)− ωµ∗(X,η))(X − η)]

≤
∫ 1

0

E
[
αΨ(X,µδ)X

T
]
∆dδ︸ ︷︷ ︸

Γ1
δ
(X)

+

∫ 1

0

E
[
αΨ(X,µδ)η

]
∆dδ︸ ︷︷ ︸

Γ2
δ
(X)

, (15)

where Ψ(X,µδ) =
exp(

⟨X,X⟩+⟨µδ,µδ⟩
σ2 )

exp(
2⟨X,µδ⟩

σ2 )
. Thus, we have that

∥E [(ωµ(X,η)− ωµ∗(X,η))(X − η)] ∥2
≤
[
supδ∈[0,1] ∥Γ2

δ(X)∥op + supδ∈[0,1] ∥Γ1
δ(X)∥op

]
∥∆∥2.

(16)

The following two Lemmas provide the upper bounds for
E[Γ2

δ(X)] and E[Γ2
δ(X)], respectively. The proofs are de-

ferred in A.1 and A.2.

Lemma 1. There exist β1, β2, β3 and β4, such that

Γ1
δ(X) ≤ α

[
β1

σ2

∥µ∗∥2
+ β2∥µ∗∥2 + β3

σ2

∥µ∗∥32
+ β4∥µ∗∥32

]
e
−

∥µ∗∥22
8σ2 .

Lemma 2. There exist λ1, λ2 and λ3, such that

Γ2
δ(X) ≤ α

[
λ1 + λ2

∥µ∗∥22
σ2 + λ3

σ2

∥µ∗∥22

]
e
−

∥µ∗∥22
8σ2 .

Applying Lemmas 1 and 2, it is easy to prove Theorem 1.
Specifically, substituting Equations (20), (21), (23), and (24)
into (16), we have that

E [ωµ(X,η)− ωµ∗(X,η)(X − η)]

≤ c1(1 + ϕ+ ϕρ+ ϕρ2 + 1
ρ
) e

−c2ρ2

S
∥µ− µ∗∥2,

(17)

whenever
∥µ∗∥22

σ2 ≥ 16/3. Based on this fact, the bound (11)

holds provided that the single-to-noise ratio ∥µ∗∥2
σ2 is suffi-

ciently large, and the bias-to-mean ratio C
∥µ∗∥2

, is sufficiently

small. So far, we have finished the proof for Property 1.

A.1 Proof of Lemma 1

We first apply Taylor’s property to the function X →
exp( ⟨X,X⟩+⟨µδ,µδ⟩

σ2 ), which yields



Γ1
δ(X) = E

α(1 + ∥µδ∥22
σ2 )XT

exp( 2⟨X,µδ⟩
σ2 )


︸ ︷︷ ︸

γ1
1 (X)

+E

[
α⟨X,X⟩XT

exp( 2⟨X,µδ⟩
σ2 )

]
︸ ︷︷ ︸

γ1
2 (X)

. (18)

Based on (18), it is easy to obtain that

sup
δ∈[0,1]

∥Γ1
δ(X)∥op ≤ sup

δ∈[0,1]

∥E(γ1
1(X))∥op + sup

δ∈[0,1]

∥E(γ1
2(X))∥op.

The remainder of the proof is to show a sufficient uniform
upper bound of ∥E(γ1

1(X))∥op and ∥E(γ1
2(X))∥op over δ ∈

[0, 1]. Based on the discussion before, the distribution of
X is symmetric around ∥µ∗∥2. Let us define A = {X ≤
∥µ∗∥

4
}. Note that ∥µδ∥2 ≤ (1+r)∥µ∗∥2. For ∥E(γ1

1(X))∥op,
therefore, we have that

E(γ1
1(X))

≤ E[
α(1+

∥µδ∥22
σ2 )XT

exp(
2⟨X,µδ⟩

σ2 )
|A]P[A] + E[

α(1+
∥µδ∥22

σ2 )XT

exp(
2⟨X,µδ⟩

σ2 )
|Ac]

≤ E[
α(1+ 1+r

σ2 ∥µ∗∥22)X
T

exp(
2∥µδ∥2X

σ2 )
|A]P[A] + E[

α(1+ 1+r

σ2 ∥µ∗∥22)X
T

exp(
2∥µδ∥2X

σ2 )
|Ac]

≤
ασ2(1+ 1+r

σ2 ∥µ∗∥22)
2e∥µδ∥2

P[A] +
α(1+ 1+r

σ2 ∥µ∗∥22)∥µ
∗∥2

4 exp(
∥µδ∥2∥µ∗∥2

2σ2 )
.

(19)

Based on the fact that ∥µδ∥2 = ∥µ∗ + δ(µ − µ∗)∥2 ≥
∥µ∗∥2 − 1

4
∥µ∗∥2, and the standard Gaussian tail bounds,

P[A] ≤ exp(− ∥µ∗∥22
32σ2 ), we can narrow the upper bound (19)

further:

E(γ1
1(X)) ≤

2ασ2(1+ 1+r

σ2 ∥µ∗∥22)

e∥µ∗∥2 exp(
∥µ∗∥22
32σ2 )

+
α(1+ 1+r

σ2 ∥µ∗∥22)∥µ
∗∥2

4 exp(
∥µ∗∥22
8σ2 )

. (20)

Similarly, we have that

E(γ1
2(X)) ≤ E[ α⟨X,X⟩XT

exp(
2∥µδ∥2X

σ2 )
|A]P[A] + E[ α⟨X,X⟩XT

exp(
2∥µδ∥2X

σ2 )
|Ac]

≤ 27ασ6

4e3∥µ∗∥32
e
−

∥µ∗∥22
32σ2 +

α∥µ∗∥32
43

e
−

∥µ∗∥22
8σ2

(21)

Therefore, Lemma 1 holds based on (20) and (21), where
β1, β2, β3 and β4 are chosen properly.

A.2 Proof of Lemma 2

Similar to the proof in Corollaries 1, we have that

Γ2
δ(X) = E

α 1 +
∥µδ∥22

σ2

exp( 2⟨X,µδ⟩
σ2 )


︸ ︷︷ ︸

γ2
1 (X)

+E

[
α⟨X,X⟩

σ2 exp( 2⟨X,µδ⟩
σ2 )

]
︸ ︷︷ ︸

γ2
2 (X)

.
(22)

To derive the uniform upper bounds of ∥E(γ2
1(X))∥op and

∥E(γ2
2(X))∥op, let δ ∈ [0, 1] be arbitrarily given and e1 ∈ RN

denotes the first canonical basis vector. We can construct an
orthonormal matrix, Q, such that Qµδ = ∥µδ∥2e1. Assume
that Y = QX, which makes Y ∼ N (Qµ∗, σ2IN ). Note that
∥µδ∥2 ≤ (1 + r)∥µ ∗ ∥2. Thus, we have ∥E(γ2

1(X))∥op ≤

E[α
1+(1+r)

∥µ∗∥22
σ2

exp(
2∥µδ∥2X

σ2 )
]. Conditioned on A := {Y1 ≤ ∥µ∗∥2

4
},

∥E(γ2
1(X))∥op

≤ E[α
1+(1+r)

∥µ∗∥22
σ2

exp(
2∥µδ∥2X

σ2 )
|A]P[A] + E[α

1+(1+r)
∥µ∗∥22

σ2

exp(
2∥µδ∥2X

σ2 )
|Ac]

≤ α(1 + (1 + r)
∥µ∗∥22

σ2 )[P[A] + exp(− ∥µδ∥2∥µ∗∥2
2σ2 )]

≤ α(1 + (1 + r)
∥µ∗∥22

σ2 )[e
−

∥µ∗∥22
32σ2 + e

−
∥µ∗∥22
8σ2 ].

(23)

Based on the constructed orthonormal projection matrix,
the operator norm of the matrix is shown as follows

E(γ2
2(X)) = E

[
α⟨X,X⟩

σ2 exp(
2⟨X,µδ⟩

σ2 )

]
=: E. Based on [1], it is easy

to obtain that E11 ≤ ασ2( 16σ2

9e2∥µ∗∥22
e
−

∥µ∗∥22
32σ2 +

∥µ∗∥22
16σ2 e

−
3∥µ∗∥22

8σ2 )

whenever ∥µ∗∥22 ≥ 16σ2/3. Moreover, for any index j ̸= 1,
we have Ejj = E[ α

exp(
2∥µδ∥2Y1

σ2 )
]. Similar to the deriva-

tion of the uniform upper bound of ∥E(γ2
1(X))∥op, we have

Ejj ≤ 2α exp(− ∥µ∗∥22
32σ2 ). Combining the results on E11 and

Ejj , we have that

∥E(γ2
2(X))∥op ≤ α(2 + 16σ2

9e2∥µ∗∥22
+

∥µ∗∥22
16σ2 ) exp(− ∥µ∗∥22

32σ2 ). (24)

Therefore, the corollary holds based on Equations (23) and
(24), where λ1, λ2 and λ3 are chosen properly.

B. PROOF OF COROLLARY 1

Define gµ(X,η) = ωµ(X,η)(X − η). Therefore, Mn(µ) =
1
S

∑S
s=1 gµ(X

s,ηs) and M(µ) = E(gµ). Thus, G = {gµ|µ ∈
Ω}. Define X , sups∈[S] ∥Xs∥2. Based on Theorem 1, we

can show that ∥g−E(g)∥2 ≤ X+C+λr∥µ∗∥2, and E(g2) ≤
(X + C)2. As for the special case with τ = 0 in Lemma 5.1
in [22], for ϵ > 0 we have that

P[supµ∈Ω ∥Mn(µ)−M(µ)∥2 > 4ϵ]

= P[supg∈G ∥ 1
S

∑S
s=1 gµ(X

s,ηs)− E(g)∥2 > 4ϵ]

≤ cN(Ω, ϵ)e
−Sϵ2

2((C+X)2+ 1
3
(C+X+λr∥µ∗∥2)ϵ) ,

(25)

where c is a positive constant. Define the right hand side

as δ. Then we can derive that ϵ = cδ,N(Ω,δ)S
− 1

2 for some
constant cδ,N(Ω,δ).

C. PROOF OF PROPERTY 2

Define event At = {∥Mn(µ
t) − M(µt)∥2 ≤ cδ,N(Ω,δ)S

− 1
2 }

and A =
∩t

i=0 Ai. Corollary 1 states that for each t we have

thatP[At ≤ c δ
t
,N(Ω, δ

t
)S

− 1
2 ] ≥ 1−δ. Therefore, for any ϵ > 0,

we have that

P[∥µt+1 − µ∗∥2 > ϵ]
= P[∥Mn(µ

t)−M(µt)∥2 + ∥M(µt)− µ∗∥2 > ϵ|A]P[A]
+P[∥Mn(µ

t)−M(µt)∥2 + ∥M(µt)− µ∗∥2 > ϵ|Ac]P[Ac]
≤ P[∥Mn(µ

t)−M(µt)∥2 + ∥M(µt)− µ∗∥2 > ϵ|A] + P[Ac]

≤ P[λt+1∥µ0 − µ∗∥2 + 1
1−λ

c δ
t
,N(Ω, δ

t
)S

− 1
2 > ϵ] +

∑t
i=0 P[A

c
i ]

≤ P[λt+1∥µ0 − µ∗∥2 + 1
1−λ

c δ
t
,N(Ω, δ

t
)S

− 1
2 > ϵ] + t δ

t
≤ δ.

The first inequality holds because P(A) ≤ 1, ∀A. To obtain
the second inequality, we first show that

∥µt+1 − µ∗∥2 = ∥Mn(µ
t)− µ∗∥2

≤ ∥Mn(µ
t)−M(µt)∥2 + ∥M(µt)− µ∗∥2

As At ⊆
∩t

i=0 Ai, we have that ∥Mn(µ
t) − M(µt)∥2 ≤ δ.

Applying the same procedure on ∥M(µt) − µ∗∥2, we can
obtain the first part. The second part is easy to obtain
by using the Boole’s Inequality. The last inequality holds

provided that ϵ ≥ λt+1∥µ0 − µ∗∥2 + 1
1−λ

c δ
t
,N(Ω, δ

t
)S

− 1
2 .

Therefore, in probability at least 1− δ, we have that

∥µt+1 − µ∗∥2 ≤ λt+1∥µ0 − µ∗∥2 + 1
1−λ

c δ
t
,N(Ω, δ

t
)S

− 1
2 . (26)

which completes the proof.


