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ABSTRACT
As one of the most significant machine learning topics, clustering
has been extensively employed in various kinds of area. Its preva-
lent application in scientific research as well as industrial practice
has drawn high attention in this day and age. A multitude of clus-
tering methods have been developed, among which the graph based
clustering method using the affinity matrix has been laid great em-
phasis on. Recent research work used the doubly stochastic ma-
trix to normalize the input affinity matrix and enhance the graph
based clustering models. Although the doubly stochastic matrix
can improve the clustering performance, the clustering structure in
the doubly stochastic matrix is not clear as expected. Thus, post-
processing step is required to extract the final clustering results,
which may not be optimal. To address this problem, in this pa-
per, we propose a novel convex model to learn the structured dou-
bly stochastic matrix by imposing low-rank constraint on the graph
Laplacian matrix. Our new structured doubly stochastic matrix can
explicitly uncover the clustering structure and encode the probabil-
ities of pair-wise data points to be connected, such that the clus-
tering results are enhanced. An efficient optimization algorithm is
derived to solve our new objective. Also, we provide theoretical
discussions that when the input differs, our method possesses in-
teresting connections with K-means and spectral graph cut models
respectively. We conduct experiments on both synthetic and bench-
mark datasets to validate the performance of our proposed method.
The empirical results demonstrate that our model provides an ap-
proach to better solving the K-mean clustering problem. By using
the cluster indicator provided by our model as initialization, K-
means converges to a smaller objective function value with better
clustering performance. Moreover, we compare the clustering per-
formance of our model with spectral clustering and related double
stochastic model. On all datasets, our method performs equally or
better than the related methods.
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1. INTRODUCTION
Graph based learning is one of the central research topics in ma-

chine learning. These models use similarity graph as input and per-
form learning tasks over the graph, such as spectral clustering [17],
manifold based dimensional reduction [2, 12], graph-based semi-
supervised learning [30, 31], etc. Because the input data graph is
often associated to the affinity matrix (the pair-wise similarities be-
tween data points), graph based learning methods show promising
performance and have been introduced to many applications in data
mining [20, 19, 18, 1, 6]. The graph-based learning methods de-
pend on the input affinity matrix, thus the quality of the input data
graph is crucial in achieving the final superior learning solutions.

To enhance the learning results, graph based learning methods
often need pre-processing on the affinity matrix. The doubly stochas-
tic matrix (also called bistochastic matrix) was utilized to normalize
the affinity matrix and showed promising clustering results [29]. A
doubly stochastic matrix S ∈ �n×n is a square matrix and all ele-
ments in S satisfy:

sij ≥ 0,

n∑
j=1

sij = 1,

n∑
i=1

sij = 1, 1 ≤ i, j ≤ n . (1)

Some previous works have been proposed to learn the best dou-
bly stochastic approximation to a given affinity matrix [29, 26, 11].
Imposing the double stochastic constraints can properly normal-
ize the affinity matrix such that the data graph is more suitable for
clustering tasks. However, even with using the doubly stochastic
matrix, the final clustering structure is still not obvious in the data
graph. The graph based clustering methods often use K-means al-
gorithm to post-process the clustering results to get the clustering
indicators, thus the final clustering results are dependent on and
sensitive to the initializations.

To address these challenges, in this paper, we propose a novel
model to learn the structured doubly stochastic matrix, which en-
codes the probability of each pair of data points to be connected.
We explicitly constrain the rank of the graph Laplacian and guar-
antee the number of connected components in the graph to be ex-
actly k, i.e. the number of clusters. Thus, the clustering results



can be directly obtained without the post-processing step, such that
the clustering results are superior and stable. To solve the proposed
new objective, we introduce an efficient optimization algorithm.
Meanwhile, we also provide theoretical analysis on the connection
between our method and K-means clustering as well as spectral
clustering, respectively.

We conduct extensive experiments on both synthetic and bench-
mark datasets to evaluate the performance of our method. We find
that our method provides a good initialization for K-means clus-
tering such that a smaller objective function value can be achieved
for the K-means problem. Also, we compare the clustering per-
formance of our model with other methods. On all datasets, our
method performs equally or better than related methods.

Notations: Throughout this paper, matrices are all written as
uppercase letters while vectors as bold lower case letters. For a
matrix M ∈ �d×n, its i-th row, j-th column and ij-th element are
denoted by mi, mj and mij respectively. The Frobenius norm of

M is defined as ‖M‖F =

√
d∑

i=1

n∑
j=1

m2
ij . The trace norm (also

known as the nuclear norm) is defined as ‖M‖∗ =
min{d,n}∑

i=1

σi,

where σi is the i-th singular value of M . For a vector v ∈ �n,

when p 	= 0, its �p-norm ‖v‖p is defined as ‖v‖p = (
n∑

i=1

|vi|p)
1
p .

Specially, 1 represents a vector whose elements are 1 consistently
and I stands for the identity matrix.

2. CLUSTERING WITH NEW STRUCTURED
DOUBLY STOCHASTIC MATRIX

To achieve good clustering results, doubly stochastic matrix is
usually utilized to approximate the given affinity matrix such that
the clustering structure in data graph can be maintained. However,
final clustering structures are still not obvious in the data graph and
post-processing step has to be employed, which leads the clustering
results to be not optimal. To address this problem and learn a more
powerful doubly stochastic matrix, we propose a new structured
doubly stochastic model to capture clustering structure and encode
probabilistic data similarity.

2.1 New Structured Doubly Stochastic Matrix
The ideal clustering structure of a graph with n data points is

to have exactly k connected components, where k is the number
of clusters. If we reshuffle the n data points in the similarity ma-
trix of the ideal graph such that points in the same connected com-
ponents are arranged together, then the k connected components
form k blocks ranging along the diagonal of the similarity ma-
trix. With such ideal structure we can immediately obtain clus-
tering indicators without post-processing steps. Thus, we propose
a novel method to learn the new structured doubly stochastic ma-
trix which has such ideal clustering structure with exactly k blocks.
From [15, 8], we know that each connected component in the graph
W corresponds to an eigenvalue 0 in the Laplacian matrix LW =
DW −W . DW is the degree matrix of graph W defined as DW =
Diag(

∑
j

wij), where Diag(a) denotes a diagonal matrix with di-

agonal elements formed by the entries of vector a. If W has exactly
k blocks, then k eigenvalues of LW are zeros, i.e. the rank of LW

is equal to n− k.
Therefore, given the affinity matrix W , we propose to learn a

new structured doubly stochastic matrix M ∈ �n×n such that its
Laplacian matrix LM = DM −M is restricted to be rank(LM ) =
n − k. With this constraint, the learnt M has the clustering block

structure along the diagonal with proper permutation, based on
which we can directly partition the data points into k clusters.

Moreover, to make M encode the probability of each pair of data
points to be connected in the graph, we normalize M1 = 1. As a
result, the entire probability for a point to connect with others is 1.
Consequently, we have DM = I . Meanwhile, since M represents
the probability of each pair of data points to be connected, we nat-
urally expect the learnt M is symmetric and nonnegative. These
constraints validate the doubly stochastic property of matrix M .

Under our new constraints, we learn a structured doubly stochas-
tic matrix M to best approximate the affinity matrix W by solving:

min
M

‖M −W‖2F (2)

s.t. M ≥ 0,M = MT ,M1 = 1, rank(LM ) = n− k .

Theoretically, in the ideal case the probability of a certain point
to correlate with points in the same cluster should be the same.
That is, suppose there are ni points in the i-th cluster, for any two
points ps and pn in the i-th cluster, the probability of ps and pn
to be connected is msn = 1

ni
. Consistently, for point ps, we have

mss = 1
ni

. Toward this end we add another term r ‖M‖2F , where
according to Lemma 1 a large enough parameter r forces the ele-
ments in each block of matrix M to be the same.

LEMMA 1. In the following problem:

min
M

‖M −W‖2F + r ‖M‖2F
s.t. M ≥ 0,M = MT ,M1 = 1, rank(LM ) = n− k ,

if the value of r tends to be infinity, the matrix M is block diagonal
with elements in each block to be the same. The number of blocks
in matrix M is k.

Proof: If r tends to infinity, the following optimization problem

min
M

‖M −W‖2F + r ‖M‖2F (3)

s.t. M ≥ 0,M = MT ,M1 = 1, rank(LM ) = n− k

is equivalent to

min
M

‖M‖2F (4)

s.t. M ≥ 0,M = MT ,M1 = 1, rank(LM ) = n− k .

According to the previous discussion, with proper rearrangement
of rows and columns of M , the constraint rank(LM ) = n − k
require the structure of M to be k blocks diagonally arranged like:⎡
⎢⎢⎢⎣

M1 0
M2

. . .

0 Mk

⎤
⎥⎥⎥⎦.

Meanwhile, let’s we denote a random row (or column) of one

block in M as mT (or m). Since
∑
i

m2
i ≥

(
∑

i
mi)

2

length(m)
, and only

when all mi are of the same value makes the left and right sides be
equal. Thus, the solution to minimize Problem (4) is that M is a
block diagonal matrix with elements in each block to be the same.

�

In addition, to highlight the constraint that M has exactly k
blocks, we add another constraint as Tr(M) = k and have:

min
M

‖M −W‖2F + r ‖M‖2F
s.t. M ≥ 0,M = MT ,M1 = 1, (5)

rank(LM ) = n− k, Tr(M) = k .



The constraint rank(LM ) = n − k makes Problem (5) non-
convex. Therefore, we use the trace norm of LM as a relaxation
form of rank(LM ). Our final objective is to solve:

Jopt = min
M

‖M −W‖2F + γ ‖LM‖∗ + r ‖M‖2F
s.t. M ≥ 0,M = MT ,M1 = 1, T r(M) = k . (6)

It is not trivial to solve our new objective Jopt in Eq. (6). We
will propose a novel algorithm to solve the new objective. Before
that, we first show the interesting connection between our model
and spectral clustering.

2.2 Connections to Spectral Graph Cut
Models

THEOREM 1. In Problem (5), if r → ∞ and W is doubly
stochastic, then Problem (5) is equivalent to spectral clustering.

Proof: As illustrated in [25], given a graph G with n points and its
affinity matrix W ∈ �n×n, the definition of graph cut is:

J =
∑

1≤p≤q≤k

s(Cp, Cq)

ρ(Cp)
+

s(Cp, Cq)

ρ(Cq)

=
k∑

l=1

s(Cl, C̄l)

ρ(Cl)
, (7)

where k is the number of clusters, Cl is the l-th cluster and C̄l

is the complement subset of cluster Cl in graph G, s(M,N) =∑
m∈M

∑
n∈N

Wmn.

For Ratio Cut, the function ρ(Cl) in Eq. (7) is defined as:

ρRCut(Cl) = |Cl| . (8)

We introduce an indicator vector ql ∈ �n(l = 1, 2, · · · , k),
such that the i-th element of ql equals to 1 if the i-th point in graph
G belongs to the l-th cluster, and 0 otherwise.

With the indicator vector ql, we have:

s(Cl, C̄l) =
∑
i∈Cl

∑
j∈C̄l

Wij = qT
l (DW −W )ql .

Along with Eq. (8), we can rewrite the cut function of Ratio Cut
in Eq. (7) as:

JRCut =
k∑

l=1

qT
l (DW −W )ql

qT
l ql

. (9)

Define matrix G ∈ �n×k such that gl = ql. We introduce an
indicator matrix F :

F = G(GTG)−
1
2 , (10)

Assume xi ∈ Ci and xj ∈ Cj . For the F matrix in Eq. (10), we
can observe that if Ci = Cj , then fij = 1√

ni
; otherwise fij = 0,

where ni denotes the number of data points in the i-th cluster.
Thus, the cut function (9) can be written as:

JRCut = Tr(FT (DW −W )F ) . (11)

If W is doubly stochastic, then DW = I . In this case, Nor-
malized Cut is equivalent to Ratio Cut and tackles the following
problem:

min
F

Tr(FT (I −W )F )

=⇒ max
F

Tr(FTWF )

=⇒ min
F

∥∥∥FFT −W
∥∥∥2

F
. (12)

Let M = FFT , the Problem (12) becomes:

min
M

‖M −W‖2F . (13)

We can directly find that mij = 1
ni

when Ci = Cj ; while

mij = 0 when Ci 	= Cj , where xi ∈ Ci and xj ∈ Cj .
Thus, the spectral clustering problem is to find a matrix M min-

imizing Problem (13). From the definition of M , we can obtain
some properties of M that M ≥ 0, MT = M and M1 = 1, thus
it is doubly stochastic. As for Tr(M), we have:

Tr(M) = Tr(FFT ) = Tr(G(GTG)−1G) = k . (14)

�

In practice, matrix W may not always be doubly stochastic. Given
affinity matrix W0, we can learn a doubly stochastic matrix W as
the initialization by solving:

min
W≥0,W=WT ,W 1=1

‖W −W0‖2F . (15)

The above problem is the same as the problem solved in [29] and
also a special case of our proposed objective in Eq. (6) when both
parameter γ and r are set as 0.

Previous method in [29] can only learn a doubly stochastic ma-
trix without clear clustering structure. After adding the regulariza-
tion terms, our new objective can achieve a better doubly stochastic
matrix with clear clustering structure to improve the clustering re-
sults.

3. OPTIMIZATION ALGORITHM
We use the Augmented Lagrange Multiplier (ALM) optimization

strategy [4] to solve our new objective Jopt in Eq. (6).
Here we introduce a slack variable L that L = I − M , then

Problem (6) can be rewritten as:

min
M

‖M −W‖2F + γ ‖L‖∗ + r ‖M‖2F
s.t. M ≥ 0,M = MT ,M1 = 1, T r(M) = k,

I −M = L , (16)

and Problem (16) is equivalent to:

min
M

‖M −W‖2F + γ ‖L‖∗

+
μ

2

∥∥∥∥I −M − L+
1

μ
Λ

∥∥∥∥
2

F

+ r ‖M‖2F (17)

s.t. M ≥ 0,M = MT ,M1 = 1, T r(M) = k ,

where Λ ∈ �n×n is the Lagrange multiplier and μ is the penalty
parameter for Eq. (17).

Compared with Problem (6), Problem (17) is easier to solve since
the trace norm term γ ‖L‖∗ is now independent to M . We intro-
duce an efficient alternating algorithm to tackle Problem (17).

The first step is fixing L and solving M , thus Problem (17)
becomes:

min
M

‖M −W‖2F +
μ

2

∥∥∥∥I −M − L+
1

μ
Λ

∥∥∥∥
2

F

+r ‖M‖2F (18)

s.t. M ≥ 0,M = MT ,M1 = 1, T r(M) = k .

Let

T =
1

μ+ 2r
(2W + μ(I − L+

1

μ
Λ)) ,



the Problem (18) can be rewritten as:

min
M

‖M − T‖2F (19)

s.t. M ≥ 0,M = MT ,M1 = 1, T r(M) = k .

Since the constraint on Tr(M) is only concerned with the diag-
onal elements, Problem (19) can be divided into two subproblems:

min
M

‖M − T‖2F , s.t. M = MT ,M1 = 1 , (20)

and

min
M

‖M − T‖2F , s.t. M ≥ 0,mT 1 = k , (21)

where m = diag(M) and diag(M) denotes a vector formed by
the diagonal elements of M .

Our strategy is to solve two subproblems, Problem (20) and Prob-
lem (21) alternately, and let their solutions project mutually. In each
iteration, we solve Problem (20) first and let its solution M1 to be
the T matrix in Problem (21), afterwards we solve Problem (21)
and let its solution M2 play the role of matrix T in Problem (20).
We solve these two problems alternately and iteratively until M
converges.

According to Von Neumann’s successive projection lemma [16],
this mutual projection strategy we use will converge to the cross
of two subspaces formed by Problems (20) and (21). The lemma
theoretically ensures that the solution of the alternate projection
strategy ultimately converges onto the global optimal solution of
Problem (19).

According to Lemma 2 in Appendix A, the optimal solution of
Problem (20) is as follows:

M = K +
n+ 1TK1

n2
11T − 1

n
K11T − 1

n
11TK , (22)

where K = T+TT

2
.

As far as Problem (21) is concerned, firstly we let matrix T in
Problem (21) equal to the solution of M to Problem (20) (shown in
Eq. (22)). Then according to Lemma 3 in Appendix B, the optimal
solution of Problem (21) is:

M = T+, m = (t− λ1)+ . (23)

Alternately we solve Problems (20) and (21) till M converges
onto its global optimal solution.

The second step is fixing M and solving L, then Problem (17)
becomes:

min
L

γ ‖L‖∗ +
μ

2

∥∥∥∥I −M − L+
1

μ
Λ

∥∥∥∥
2

F

. (24)

Let N = (I −M + 1
μ
Λ), Problem (24) becomes

min
L

γ

μ
‖L‖∗ +

1

2
‖L−N‖2F . (25)

According to [5], the solution of Problem (25) is:

L = UDiag((σi − γ

μ
)+)V

T , (26)

where the singular value decomposition of N is N = UΣV T .
Diag((σi − γ

μ
)+) is a diagonal matrix with i-th diagonal element

as (σi − γ
μ
)+.

Our algorithm to solve the new objective is summarized in Al-
gorithm 1.

Convergence and Complexity Analysis: The convergence of
ALM algorithm was proved and discussed in previous papers. Please

Algorithm 1 Proposed Algorithm

Input:
The given affinity matrix W ∈ �n×n;
The number of clusters k;

Output:
The learnt similarity matrix M∗;
Initialization:
Let the count number of iteration t = 0. Randomly initialize
matrix L(0) ∈ �n×n and set the Lagrange multiplier matrix
Λ(0) = 0 ∈ �n×n. Set the penalty parameter μ(0) = 0.1,
and the increment step parameter ρ > 1;
Preprocessing:
Solve Problem (15) to pre-process W and get a doubly stochastic
matrix M (0). Let W = M (0).
while not converge do

1. Update M (t+1) using Eq. (22) Eq. (23) alternatively via the
successive projection strategy;
2. Update L(t+1) by Eq. (26);
3. Update Λ(t+1) = Λ(t) + μ(t)(I −M (t+1) − L(t+1));

4. Update μ(t+1) = ρμ(t);
5. Update t = t+ 1;

end while
Return: M∗;

refer to the literature therein [3, 22]. Because our new objective is
convex, our algorithm converges to the global optimum.

In Algorithm 1, the slowest step is Step 2 for updating L. It
requires O(n3) time to implement the singular vector decomposi-
tion, where n is the number of samples in the dataset. This time
complexity is comparable to that of spectral clustering.

4. CONNECTIONS TO K-MEANS CLUSTER-
ING

Here in this section, we will further discuss the connection be-
tween our model and the K-means clustering problem.

THEOREM 2. In Problem (5), if r → ∞ and W = XTX , then
Problem (5) is equivalent to K-means clustering.

Proof: Given a set of data points X = [x1,x2, ...,xn] ∈ �d×n,
the K-means clustering problem is meant to partition X into k
(1 ≤ k ≤ n) clusters C = {C1, C2, ..., Ck} such that the sum
of the within cluster variance is minimized [13]. That is to say, the
objective function of the K-means problem is:

min
C

k∑
i=1

∑
xj∈si

‖xj − μi‖2 (27)

where μi is the mean of data points belonging to Ci.
If we introduce two matrix U ∈ �d×k and G ∈ �n×k, where

U = [μ1, μ2, ..., μk] and G indicates the clustering indices , then
Eq. (27) can be reformulated as:

min
G∈Ind,U

∥∥∥X − UGT
∥∥∥2

F

⇐⇒ min
G∈Ind,U

Tr(GUTUGT )− 2Tr(XTUGT )
(28)

Since the solution of U w.r.t. X and G is U = XG(GTG)−1,
we have Tr(GUTUGT ) = Tr(XTUGT ), thus Eq. (28) can be



written as:

max
G∈Ind,U

Tr(XTUGT )

⇐⇒ max
G∈Ind

Tr((GTG)−
1
2GT (XTX)G(GTG)−

1
2 )

⇐⇒ max
F

Tr(FT (XTX)F )

(29)

where F = G(GTG)−
1
2 .

Note that the Tr(FFTFFT ) = Tr(FFT ) = Tr(G(GTG)−1G)
= k, so Problem (29) is equivalent to:

min
F

∥∥∥FFT −XTX
∥∥∥2

F
(30)

Let M = FFT , then Problem (30) can be rewritten as:

min
M∈D

∥∥∥M −XTX
∥∥∥2

F
(31)

where M ∈ D indicates some constraints on the M matrix. So the
K-means clustering problem is to find a matrix M meeting some
requirements such that M can minimize Problem (31).

Let’s take further observe the properties of M .
From the definition of M , where M = FFT , we can directly

find that mij = 1
ni

, if xi and xj belongs to the same cluster; and

mij = 0 otherwise. Also, it’s apparent that M ≥ 0, MT = M
and M1 = 1, that is to say, M is doubly stochastic. Moreover, we
have Tr(M) = Tr(FFT ) = k. �

5. EXPERIMENTAL RESULTS
Our structured doubly stochastic model (SDS) can uncover the

clustering structure and directly provide the clustering results, thus
the clustering performance using doubly stochastic matrix can be
enhanced. In this section we evaluate the clustering performance of
our method on both synthetic and benchmark datasets, and compare
them to the related doubly stochastic model and spectral clustering
methods.

Moreover, according to the discussion in the previous section,
our model possesses interesting connection with K-means cluster-
ing, we also conduct experiments to test whether our model pro-
vides an approach to better solving the K-means clustering prob-
lem.

5.1 Experiments on Clustering
In this subsection, we conduct clustering experiments on our

method and several related method. Our goal is to test whether the
structured doubly stochastic matrix learned in our model is benefi-
cial to improve the clustering performance under different circum-
stances.

5.1.1 Experimental Settings on Clustering
To evaluate the clustering performance of our method, we com-

pare with spectral clustering, i.e, Ratio Cut and Normalized Cut, as
well as the doubly stochastic normalization (DSN) method [29].

All comparing methods require an affinity matrix as the input.
We construct the input affinity matrix with the self-tune Gaussian
method [7], where the number of neighbors is set to be 5 and the
value of σ is self-tuned. Moreover, we let the input matrix W of
our method to be initialized as shown in Eq. (15) such that W is
doubly stochastic. In the experiment, we set the number of clus-
ters to be the ground truth in each dataset. In our method, we
set parameter μ = 0.1, ρ = 1.1 and r to be tuned in the range of
{100, 100.5, ..., 105}.

For all methods requiring K-means as the post-processing step,
including Ratio Cut, Normalized Cut and DSN, we give them the
same 100 random initializations and compute their respective best
initialization vector w.r.t K-means objective function value. Since
their performance is unstable with different initialization, we only
report their respective best results in the 100 times repetition. For
DSN method, we set the number of iteration as 3000 so as to get a
good doubly stochastic matrix for clustering.

All experiments are conducted on a Windows system with Intel
Core i7-3770 Processor (8M Cache, 3.40 GHz).

The evaluation of different methods is based on two clustering
metrics: accuracy and NMI (Normalized Mutual Information).

Accuracy is the percentage of the correctly assigned labels. NMI
is short for the normalized mutual information. Let L denote the
real label vector in a certain dataset, while L′ denotes the predicted
one, then

NMI(L,L
′
) =

I(L,L
′
)

max(H(L), H(L′))
, (32)

where I(L,L
′
) is the mutual information between L and L

′
:

I(L,L
′
) =

∑
li∈L

∑
l
′
j∈L

′
p(li, l

′
j) log

p(li, l
′
j)

p(li)p(l
′
j)

, (33)

and H(L) is the entropy of L:

H(L) = −
n∑

i=1

p(li) log p(li) . (34)

5.1.2 Clustering Experiments on Synthetic Data
First of all, we conduct clustering experiments on the synthetic

data as a sanitary check. The synthetic dataset is a 100 × 100 ma-
trix with four 25×25 block matrices diagonally arranged. The data
within each block denotes the probability of two corresponding
points from one same cluster to be connected; while the data out-
side all the blocks denotes the probability of pair-wise data points
from different clusters to be connected, i.e., noise (which should
be 0 in the ideal clustering data). The probability values within
each block are randomly generated in the range of (0, 1); while
the noise data is randomly generated in the range of (0, c), where
c is set to be 0.5 and 0.6 respectively. What’s more, to make this
clustering task more challenging, we randomly pick out 25 noise
data and set their value to be 1.

Fig. 1 shows the original random matrix and corresponding clus-
tering results of SDS. We can notice that our model performs well
in this task. In our approach, we successfully learn a structured
doubly stochastic matrix with explicit block structure, which di-
vides the data into exactly four clusters. After adding high-level
disturbance in the random data, our method still effectively recov-
ers the clustering structure, which indicates the robustness of our
model.

When the noise ratio is 0.5, our method works out an almost
perfect structured doubly stochastic matrix with four clear blocks.
As the noise increases, the block structure in the original data blurs,
but our model is still able to detect the intrinsic cluster structure
from the data.

5.1.3 Clustering Experiments on Benchmark Datasets
We evaluated the proposed double stochastic method on 7 bench-

mark datasets: AR [14], FERET [21], Yale [9], ORL [23], Carcino-
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Figure 1: Illustration of our clustering results on the block di-
agonal synthetic data with different settings of noise. On the
left column shows the graph structure of the original data gen-
erated in the experiment. Figures on the right denote the struc-
ture of the doubly stochastic matrix obtained in our SDS model.

Table 1: Descriptions of benchmark datasets used in our exper-
iments.

Datasets Number of Instances Dimensions Classes
AR 840 768 120

FERET 1400 1296 200
Yale 2414 1024 38
ORL 400 1024 40

Carcinomas 174 9182 11
SRBCTML 83 2308 4

LEUML 72 3571 2

mas [24, 28], SRBCTML [10] and LEUML1. The detailed descrip-
tion of these datasets is summarized in Table 1.

The clustering performance comparison is summarized in Table
2. Results in Table 2 suggest that our method works very well on
real benchmark datasets. Our SDS method maintains a high po-
tential to outperform other methods on these distinct datasets. The
theoretical proof in the methodology section indicates the connec-
tion between our our model and spectral clustering problem, while
the experimental results here verify SDS’s better clustering perfor-
mance. This suggests SDS has the ability to better solve the spec-
tral clustering problem. Compared with the up-to-date method, our
method gains an obvious advantage over DSN. DSN only holds
constraints on the doubly stochastic property of the learned graph
but not its cluster structure, thus cannot get the optimal clustering
results. On the contrary, our model learns a novel doubly stochas-
tic matrix with explicit block structure, which performs better in
clustering.

5.1.4 Clustering Results Analysis
To further analyze the clustering performance, we draw the graph

learned from different methods and compare their structure. We
compare the graphs represented by the doubly stochastic matrix
learned in DSN and SDS, respectively, and also, we display the

1http://www2.stat.duke.edu/courses/Spring01/sta293b/datasets.html

graph constructed via self-tune Gaussian method, which is the input
for spectral clustering. To explicitly view the graph structure, here
we use the two datasets with relatively small number of classes and
samples as the example, i.e., LEUML and SRBCTML. We present
the graphs in Fig. 2. In each graph, row and columns are reshuf-
fled such that samples from the same cluster are put together, which
makes the cluster structure more clear to observe in the graph. For
LEUML and SRBCTML, the r value we set for SDS is 100 and
100.5, respectively. We can notice that the graph learned by SDS
maintains the most clear block structure, and elements in each clus-
ter tend to have similar value. These observations coincide with our
theoretical analysis. Especially in the LEUML dataset, the doubly
stochastic matrix learned by DSN is quite noisy, which leads to bad
clustering performance shown in Table 2. Whereas, due to the low-
rank constraint on the graph Laplacian matrix, the doubly stochas-
tic matrix learned in our SDS model has more clear block structure,
which accounts for the better clustering results obtained from SDS.

5.2 Experiments on K-means Task
In the K-means clustering problem, a ”better" solution signi-

fies a smaller objective function value as well as a higher cluster-
ing accuracy. Since K-means problem is non-convex, the quality
of initialization is crucial in performing K-means clustering. In
this subsection, we conduct experiments on both synthetic and real
benchmark datasets to demonstrate the contribution of our method
in better solving the K-means problem.

5.2.1 Experimental Settings on K-means Task
The experimental settings are similar to the settings in the clus-

tering experiments. The different part is that in this section, we
assign the clustering indicator obtained in our method as an initial-
ization for K-means and see if the K-means clustering problem
can be better solved with our initialization. For our method, we use
W = XTX as the input matrix.

Still, the number of clusters is set to be the ground truth in each
dataset. When implementing K-means clustering, unless specified
otherwise, the following settings are adopted: we use 100 random
initializations and record the average as well as best result w.r.t.
K-means objective function value in the 100 times repetition.

The evaluation is based on three metrics: accuracy, NMI and the
K-means objective function value.

5.2.2 K-means Experiments on Synthetic Data
In the synthetic experiment, our toy data is a randomly generated

multi-cluster matrix. Data points in each cluster are sampled i.i.d.
from the Gaussian distribution N (0, 1). In our experiment, we set
the number of clusters to be 100, number of samples to be 1000,
while the dimensionality to be {2, 50, 1000} respectively. Our goal
is to partition these clusters apart with K-means method. In the
beginning we run K-Means for 10000 times and record the min-
imum K-means objective value and the corresponding clustering
accuracy. Then we run our method once by setting the input matrix
to be W = XTX and use the obtained clustering results as an ini-
tialization index vector for K-means and compute the same metrics.
Comparison results are summarized in Table 3, which indicates ap-
parent superiority of our method over K-means. It shows that even
after 10000 times run, the minimum K-means objective value and
clustering accuracy obtained by K-means are still far behind the
result obtained by our method with just one run. This verifies that
our method is able to better solve the K-means problem.

5.2.3 K-means Experiments on Benchmark Datasets
Still, we evaluate our model on the 7 benchmark datasets shown



Table 2: Experimental results comparison of clustering on benchmark datasets.

ACCURACY

Ratio Cut Normalized Cut DSN SDS

AR 0.358 0.358 0.382 0.404
FERET 0.249 0.255 0.279 0.280

Yale 0.387 0.396 0.439 0.448
ORL 0.653 0.625 0.605 0.663

Carcinomas 0.724 0.695 0.690 0.718

SRBCTML 0.434 0.434 0.410 0.446
LEUML 0.903 0.903 0.542 0.917

NMI

Ratio Cut Normalized Cut DSN SDS

AR 0.677 0.700 0.705 0.706
FERET 0.647 0.674 0.682 0.683

Yale 0.561 0.570 0.604 0.605
ORL 0.799 0.794 0.783 0.814

Carcinomas 0.719 0.697 0.707 0.712

SRBCTML 0.169 0.160 0.132 0.187
LEUML 0.547 0.547 0.079 0.585

Table 3: K-means objective function value and clustering results comparison on synthetic datasets.

K-means Min_obj
K-means Min_obj

with SDS Initialization
K-means Accuracy (min_obj)

K-means Accuracy
with SDS Initialization

d = 2 1.60 1.15 0.713 0.822
d = 50 420.08 0.14 0.861 1.000

d = 1000 10292.00 2.7305 0.863 1.000

Table 4: Experimental results comparison for K-means problem on benchmark datasets.

K-means
Objective
Function

Value

K-means Min_obj K-means Average
K-means with

SDS Initialization

AR 7982.58 8395.09 ± 124.98 7562.62
FERET 28684.82 29101.97 ± 215.69 26420.99

Yale 39578.65 40398.72 ± 337.14 39381.64
ORL 6223.80 6633.50±156.62 5943.80

Carcinomas 47160.00 48682.00±692.63 46787.00
SRBCTML 5747.30 5982.00±161.18 5747.30

LEUML 11364.00 11398.00±78.78 11364.00

Accuracy

K-means Min_obj K-means Average SDS

AR 0.310 0.285 ± 0.011 0.343
FERET 0.206 0.200 ± 0.005 0.234

Yale 0.111 0.110 ± 0.006 0.114
ORL 0.568 0.490±0.031 0.638

Carcinomas 0.672 0.571±0.050 0.695
SRBCTML 0.374 0.446±0.070 0.458

LEUML 0.708 0.740±0.058 0.736

NMI

K-means Min_obj K-means Average SDS

AR 0.640 0.621 ± 0.009 0.688
FERET 0.598 0.581 ± 0.006 0.638

Yale 0.170 0.163 ± 0.009 0.178
ORL 0.754 0.711±0.018 0.781

Carcinomas 0.648 0.591±0.042 0.704
SRBCTML 0.106 0.187±0.081 0.261

LEUML 0.182 0.225±0.112 0.237

in Table 1. We summarize the K-means performance comparison
of K-means clustering and our method in Table 4. From Table 4,
we can notice that our method improves the performance of K-
means on real benchmark datasets. On all dataset, our SDS method
performs equally or even better than K-means clustering. These re-

sults demonstrates that our model makes a good way to better solve
the K-means clustering problem. By adopting the cluster indicator
learned in our model as the initialization, not only is the K-means
objective function value reduced, but the clustering performance is
also boosted to a large extent.



5.3 Experiments on Convergence Analysis
In this subsection, we analyze the influence of parameter r in Eq.

(6) to the convergence of our algorithm. To save space, we just take
two datasets, Carcinomas and ORL, as an example. We apply our
method to these benchmark datasets with three different r values
(i.e., 10, 103 and 105) and record the objective value of our model
in each iteration.

The convergence results are presented in Fig. 3. We can notice
that no matter what the r value is, our model always converges
within about 80 iterations, which indicates the fast convergence of
our algorithm.

6. CONCLUSIONS
In this paper, we proposed a novel structured doubly stochastic

model with rank constraint on the graph Laplacian matrix. The
doubly stochastic matrix learned in our model possesses explicit
clustering structure, from which we can immediately partition data
points into k connected components, where k is the number of clus-
ters. The doubly stochastic property guarantees the effectiveness of
the learnt similarity matrix while the rank constraint on the graph
Laplacian matrix enhances the clustering ability. The quality of the
learnt graph was verified by extensive experimental results, which
suggested the feasibility of our model. What’s more, we theoreti-
cally and empirically proved that our method made its own contri-
bution in better solving the K-means and spectral clustering prob-
lem.

Appendix A
LEMMA 2. The following gives the global optimal solution to

Problem (20):

M = K +
n+ 1TK1

n2
11T − 1

n
K11T − 1

n
11TK,

K =
T + TT

2
.

Proof: With the Lagrangian function, Problem (20) can be rewrit-
ten as:

min
M

1

2
‖M − T‖2F −(λT (M1−1))−Tr(ΛT (MT −M)) , (35)

where Λ ∈ �n×n and λ ∈ �n are Lagrange multipliers.
Taking derivative w.r.t. M and set it to 0, we have:

M − T − (ΛT − Λ)− λ1T = 0 . (36)

Compute transpose on both sides of Eq. (36), we have:

M − TT + (ΛT − Λ)− 1λT = 0 . (37)

Subtracting Eq. (36) from Eq. (37), we get:

T − TT + 2(ΛT − Λ) + λ1T − 1λT = 0

=⇒ −(ΛT − Λ) = 1
2
(T − TT + λ1T − 1λT ) . (38)

Combining Eq. (36) with Eq. (38), we further get:

2(M − T ) + (T − TT + λ1T − 1λT )− 2λ1T = 0

=⇒ 2M − T − TT − λ1T − 1λT = 0 . (39)

Multiply the vector 1 on both sides of Eq. (39), we have:

21 − T1 − TT 1 − nλ− 1λT 1 = 0 . (40)

Since λT 1 is a number, it is apparent that (λT 1)T = λT 1, thus:

21 − T1 − TT 1 − nλ− 11Tλ = 0 . (41)

From Eq. (41) we can obtain the solution of λ as follows:

λ = (11T + nI)−1(21 − T1 − TT 1) . (42)

To enhance the computing speed, we compute the inverse term
in Eq. (42) by means of the Woodbury formula [27]:

(A+UCV )−1 = A−1−A−1U(C−1+V A−1U)−1V A−1 . (43)

Thus the inverse term in Eq. (42) can be rewritten as:

(11T + nI)−1 = (− 1

2n2
11T +

1

n
I) . (44)

From Eq. (44), we can rewrite Eq. (42) as follows:

λ = (− 1

2n2
11T +

1

n
I)(21 − T1 − TT 1)

=
1

n
1 − (− 1

2n2
11T +

1

n
I)(T + TT )1 . (45)

Plugging the solution of λ in Eq. (45) to Eq. (39), we get:

2M = T + TT + λ1T + 1λT

= T + TT +
2

n
11T − (− 1

2n2
11T +

1

n
I)(T + TT )11T

−11T (T + TT )(− 1

2n2
11T +

1

n
I)

= T + TT +
2

n
11T +

1TTT 1
n2

11T +
1TT1
n2

11T

− 1

n
T11T − 1

n
TT 11T − 1

n
11TTT − 1

n
11TT

Let K = T+TT

2
, then we can rewrite the above equation as:

M = K +
n+ 1TK1

n2
11T − 1

n
K11T − 1

n
11TK , (46)

which is the global optimal solution of Problem (20). Obviously,
M is symmetric and

M1 = K1 +
n+ 1TK1

n
1 −K1 − 1

n
11TK1 = 1 , (47)

which means that the solution of M in Eq. (46) meets the require-
ments of Problem (20).

Specially, when T is symmetric, the solution of M is:

M = T +
n+ 1TT1

n2
11T − 1

n
T11T − 1

n
11TT . (48)

�

Appendix B
LEMMA 3. The following gives the global optimal solution to

Problem (21):

M = T+,

m = (t− λ1)+ .

where m = diag(M).

Proof: Require M = T+, then Problem (21) could be rewritten
as follows:

min
m

‖m− t‖22 (49)

s.t. m ≥ 0,mT 1 = k , (50)

where m = diag(S) and t = diag(T ).



Similarly, we can use the Lagrangian function to solve Problem
(49) and define:

G(m, λ, η) =
1

2
‖m− t‖22 − λ(mT 1 − k)− ηmT , (51)

where λ ∈ �n and η ∈ �n are Lagrange multipliers.
Taking derivative w.r.t. m and set it to 0, then we can solve m

in Problem (51) as follows:

m− t− λ1 − η = 0

=⇒ m = (t− λ1)+ . (52)

�
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Figure 2: Illustration of the graph learned from different methods on LEUML and SRBCTML datasets. Rows and columns of the
graph are reshuffled respectively such that data points belonging to the same cluster are put together.
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(b) r = 103 in Carcinomas
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(c) r = 105 in Carcinomas
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(d) r = 10 in ORL
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(e) r = 103 in ORL
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(f) r = 105 in ORL

Figure 3: Objective function value of Eq. (6) with different r parameters in each iteration on Carcinomas and ORL datasets.


