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ABSTRACT
Easy accessibility can often lead to over-consumption, as seen in
food and alcohol habits. On video on-demand (VOD) services, this
has recently been referred to as “binge watching”, where poten-
tially entire seasons of TV shows are consumed in a single viewing
session. While a user viewership model may reveal this binging
behavior, creating an accurate model has several challenges, in-
cluding censored data, deviations in the population, and the need
to consider external influences on consumption habits. In this pa-
per, we introduce a novel statistical mixture model that incorpo-
rates these factors and presents a “first of its kind” characterization
of viewer consumption behavior using a real-world dataset that in-
cludes playback data from a VOD service. From our modeling, we
tackle various predictive tasks to infer the consumption decisions
of a user in a viewing session, including estimating the number of
episodes they watch and classifying if they continue watching an-
other episode. Using these insights, we then identify binge watch-
ing sessions based on deviation from normal viewing behavior. We
observe different types of binging behavior, that binge watchers of-
ten view certain content out-of-order, and that binge watching is not
a consistent behavior among our users. These insights and our find-
ings have application in VOD revenue generation, consumer health
applications, and customer retention analysis.
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1. INTRODUCTION
In recent years, the ability to record user behavior has given rise

to datasets containing consumption patterns of individuals for ac-
tivities as diverse as alcohol consumption [1] and gambling [2]. Of
course, not all users consume at the same rate, with some users
specifically over-consuming during a single session. This is a com-
pelling problem, as the ability to identify the over consumption
of food, alcohol, or gambling behavior has applications in public
health [18]. The focus of this paper is on modeling and inferring
⇤This work was completed while at Technicolor Research.
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the user consumption behavior in order to identify abnormal over-
consumption, or “binging” behavior from real-world consumption
data. Specifically, we focus on user binging of video content, or
“binge watching”.

For years television episodes were consumed in a standard net-
work broadcast format, where each new episode was released once
a week and then consumed one-at-a-time. In recent years, with the
advent of video on-demand (VOD) services, consumers now have
the ability to access full seasons of television episodes at once. This
has led to the rise of binge watching, where multiple TV episodes,
and potentially entire seasons, are consumed in a single viewing
session. Recent market research studies have shown that over 60%
of consumers binge watch on a regular basis [17]. This change in
watching habits, and consumers demands to continue binge watch-
ing, has resulted in modified viewership numbers, content release
schedules, and consumer expectations.

Unfortunately, the precise modeling of user binge watching be-
havior is difficult. While the popular press usually defines binge
watching with respect to a specific number of episodes consumed
for all scenarios (e.g., between two and six episodes in one sit-
ting [3]), this ignores factors such as behavior changes due to the
type of content or the day of the week. To create an accurate view-
ership model from real-world VOD playback data, several factors
must be considered. The first factor is incorporating when the user
has consumed all their available items, resulting in “censored” data,
where the user cannot possibly consume more but may desire to.
The second is the lack of homogeneous behavior among all users,
where the binge users may behave considerably different than those
that consume only a handful of episodes. Finally, external factors,
such as the time of day, or details about the specific object being
consumed – such as, what specific show is being watched – can
determine different behavioral patterns.

In this paper, we model, characterize, and infer consumption be-
havior of users by accommodating all the factors mentioned above
using real-world playback observations. We reject a one-size-fits-
all approach and create a statistical mixture model that adapts to
the many sub-populations of the observed user base. Additionally,
we account for the possibility of censored data and learn the contri-
bution of covariates (i.e., external factors) on the number of items
consumed. The result is framing our user viewership problem as
censored Poisson regression with latent factors. To estimate the
relevant parameters of this model, we derive a novel Expectation-
Maximization (EM) algorithm that incorporates these features.

Given our model, we infer various aspects of the user consump-
tion behavior. This includes predicting the total number of episodes
a user will consume from the start of a viewing session. Our tech-
nique results in an improvement of 4% in RMSE and 9% in MAE
over other tested techniques. Additionally, we show how this model



can predict if the user will continue watching another episode dur-
ing the session. For this application, our model results in classi-
fication AUC over 7% better than off-the-shelf techniques. These
consistent improvements demonstrate the accuracy of our viewing
model.

Finally, we demonstrate how this model can be used to detect
binge watching sessions. We determine what constitutes “binge
watching”, identify sessions that involve binge watching, and show
how behavior of users in such sessions deviates from normal be-
havior. We describe the particular television show titles and genres
that cause binge watching, with the observation that comedies (like
“The Big Bang Theory” and “How I Met Your Mother”) result in
more and longer binge watching sessions than dramatic shows (like
“Homeland” and “The Walking Dead”). We also discover that users
binge differently dependent on the content. On story-driven televi-
sion shows (such as many dramas or “How I Met Your Mother”),
a vast majority of users binge the episodes sequentially, allowing
them to complete, or catch-up on, episodes quickly. On shows
without a dominant storyline across episodes (such as “The Big
Bang Theory” or “Modern Family”), almost half the binge sessions
view episodes out-of-order, possibly as a background activity. Our
insights demonstrate how binge watching is a distinctly different
activity compared with regular viewing behavior.

2. RELATED WORK
Characterizing aggregate traffic on Video On-Demand (VOD)

services has been a well studied area. Prior work often focused on
detailing the traffic patterns from a specific service, such as Telia-
Sonera [4], China Telecom [22], or YouTube [7]. These specific
papers focused on content popularity and viewing trends for the
purposes of service improvements. This has direct application on
content caching and availability, but is separate from our focus on
individual user sessions. The modeling of individual user sessions
in VOD was the focus of [6]. This study analyzed content popu-
larity and how it changes as a result of individual user behavior.
To the best of our knowledge, no prior VOD study targets viewer
consumption patterns with the consideration of the application of
binge-watching characterization and inference. To this date, the
primary source of binge watching characterization has come from
explicit market research surveys.

Netflix conducted a survey on the binge watching behavior of
3,078 adults aged 18 and older, of whom 1,496 people (48.6% of
respondents) stream TV shows at least once a week [3]. Among
these participants, 61% reported they binge watch regularly, where
binge watching is defined as watching two to three episodes of a
single TV series in one session. More recently, TiVo conducted a
similar survey on a group of 15,196 users [17]. They define binge
watching as watching 3 or more episodes in one day. The results
of this survey indicate that 91% of users report binge watching as
a common behavior, of whom 40% and 69% reporting they had
at least one binge watching session within a week and within a
month of the survey, respectively. According to the responses from
both surveys, factors driving binge watching include catching up
on TV shows and compensating for the delay in learning about a
show since the first time it was aired. We note that all of these
prior research has focused on qualitative user responses, and not on
actual user playback information.

Our focus on modeling user episode playback takes the form of
building regression models on event counts. Parametric regression
models, such as Poisson regression model and its variants [15],
have been extensively used for modeling event data. Extensions,
such as censored Poisson regression model in medical and bio-
logical studies [21], and mixtures of Poisson regression has also

been applied in various fields [10, 11, 16]. These extensions can be
viewed as a limited case of our proposed model of censored Poisson
regression with latent factors. Recently Karlis et al. [13] proposed a
censored mixture Poisson regression model which is similar to our
model. In contrast, we focus on session dependent censorship while
this prior work considered the traditional setting where censorship
threshold is fixed for all observations. Additionally, Karlis et al.
simplifies their model parameter estimation, whereas our algorithm
optimizes the exact likelihood. Finally, our regression model is a
more general form of survival analysis, which has been commonly
used in various other time-to-event domains, such as user engage-
ment modeling and churn prediction [12], patient treatment stud-
ies [14], and auction price inference [20].

3. VIDEO ON-DEMAND DATASET
We received a sampled set of anonymized users from a US-

based streaming video on-demand service across a timespan of 16
months from January 2014 to April 2015. This service is pay-per-
content and consists of user interactions (e.g., content play actions,
pause actions, etc.) from TV, tablet, and phone devices. Our focus
throughout the remainder of the paper is on modeling television
consumption habits via this dataset, specifically with assessing ab-
normal binge consumption patterns. In order to assess viewing con-
sumption patterns, we must first define a discrete television viewing
session. Informed by prior work, we use the following definition,

DEFINITION 1. A watching session consists of all interactions
of a user containing watching at least one episode of television and
with less than an hour between interactions.

As a result, we created user viewing sessions over our sample of
VOD data. We then removed the least popular shows and kept tele-
vision series that have been watched in more than 100 sessions.
In order to filter out infrequent users, we only kept sessions of
users who purchased five or more episodes. The resulting dataset
contains 65 popular television titles, 3,488 users, and 26,404 total
viewing sessions across these users, with each session lasting an
average of 91.8 minutes and a median of 62.0 minutes.

Considering just the number of episodes consumed in each ses-
sion, the histogram can be seen in Figure 1a presented in log scale.
As expected, we find a majority of users consume only a handful
of episodes during each session. We also find that this distribu-
tion has a relatively heavy tail, indictating potential abnormal over-
consumption behavior in some sessions.

Using this actual VOD playback dataset, we find that viewing be-
havior is not a consistent phenomenon. For example, in Figure 1b,
we show the average number of episodes viewed per session given
the day of the week. This plot indicates that viewers have shorter
viewing sessions on weekdays compared with the weekend (i.e.,
Friday, Saturday, and Sunday). Additionally, we show the average
number of episodes consumed relative to the start hour of the ses-
sion in Figure 1c for both weekday and weekend. Again, we find
that the time context changes user behavior. In particular, there are
more viewing activities during weekend nights as opposed to week-
end days, and the difference between weekend and weekday views
appears to be higher later in the day. Finally, our dataset also re-
veals different behaviors relative to the mechanism the viewer uses
to consume content. We find that on mobile devices users con-
sume on-average 1.58 episodes per session, while on televisions
they consume 2.00 episodes on average.

In addition to the user context of time and device, viewing be-
havior is also modified by the content itself. We find that TV
shows generally fall in two categories in terms of the length of their
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(a) Histogram with respect to the number of
episodes viewed per session in log scale.
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(b) Average number of episodes viewed per ses-
sion relative to the day of the week.
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(c) Average number of episodes viewed
per session relative to the hour of day.

Figure 1: Viewing statistics.

individual episodes; with episodes commonly either 22 minutes
or 44 minutes in length, such that with commercials the episodes
would be either a half-hour or one hour in length, respectively. In
our VOD data, the average number of episodes per session is re-
ported to be 1.79 for longer episodes whereas it is 2.54 for shorter
episodes.

In Table 1, we also show the average number of episodes con-
sumed for specific television shows. We find that this changes dra-
matically between different titles and different genres. For exam-
ple, genres of drama/horror/action tended to have fewer episodes
viewed per session compared with television shows in the comedy
genre. Additionally, we find that even shows in the same genre can
have different behavior, such as the more narrative driven comedy
show “How I Met Your Mother” resulting in viewers watching on-
average half an episode more per session compared with the less
story-focused comedy of “The Big Bang Theory”.

Table 1: Average Number of episodes consumed per session for
given television shows.

Title Genre Mean Episodes Running Time
per Session per Episode

Walking Dead Horror 1.72 44 min.
Breaking Bad Drama 1.78 49 min.

Arrow Action 2.01 44 min.
Big Bang Theory Comedy 2.51 22 min.

How I Met Your Mother Comedy 3.07 22 min.

We also need to consider the availability of content for partic-
ular television shows. For example, consider there are only three
episodes of a particular television series available for the user, and
the user consumes all three episodes. This is censoring behavior.
In our dataset, we find that 20.9% of all sessions are censored, in-
dicating that the termination of a session may not have been by user
choice. We find this phenomena is not uniformly distributed across
television shows, with 41.1% of “The Walking Dead” sessions cen-
sored, only 6.04% of “The Big Bang Theory” censored, and 17.4%

of “How I Met Your Mother” sessions censored.
Our observations from this dataset indicate considerable differ-

ences in viewing behavior due to user context (e.g., time of the
day, day of the week) and the television show content. In addition,
the frequent occurrence of session censorship indicates that many
of the session terminations may be forced by content availability.
These insights indicate the need to consider these multitude of fac-
tors in order to accurately model user viewing behavior.

4. CONSUMPTION BEHAVIOR MODEL
The characterization of our playback dataset indicates pre-

dictable patterns in user behavior. We find that certain timing,
content, and metadata all result in distinct differences in viewing
patterns. This points to the ability to model user behavior by incor-
porating these factors. An accurate viewing model allows for user
behavior inference, such as, prediction of consumption, estimation
of session length, and the extraction of binge watching events.

In this section, we present the assumptions and details of the pro-
posed model of the consumption behavior of users. As mentioned
earlier, a key point in our model is to account for the possibility
of censorship for sessions where the user cannot consume more
episodes but may, in fact, desire to. We also consider the impact
of external factors, such as content and context features, on user
consumption behavior. Finally, to account for the variability of be-
havior among user population, the proposed model consists of a
mixture of components. A novel Expectation-Maximization (EM)
algorithm is proposed to estimate the parameters that correspond to
these factors.

4.1 Distribution Assumptions
Let vi denote the number of episode views in the session i

1.
As defined previously, a session is the unit of interaction time of
the user with the VOD in a single sitting, and the number of views
is the discrete value of interest on which our model focuses. An
initial assumption is that this value follows a Poisson distribution
with parameter �, whose probability mass function is,

f(vi) = Pr(vi;�) =
�

vi

e

�
vi!

(1)

We choose the Poisson distribution for this purpose mainly because
it is suitable to express the probability of counting events, such as
the number of episodes viewed. While different discrete distribu-
tions could be used here, such as a geometric distribution, we later
find in Section 5 that this offers no improvements.

4.2 Censorship in Consumption Behavior
In the VOD domain of our interest, we consider censorship to

occur if the last episode watched in a session is the latest episode
of the corresponding television series that is aired and available on
the VOD service at the time of viewing 2 Therefore, the act of cen-
sorship in our setting varies and depends on the current status of the
show at the time of a session. For ease of notation, we introduce
1For ease of notation, we consider vi to be the number of episodes
consumed in session i, minus one (e.g., viewing one episode would
result in vi = 0.)
2It is noted this concept of censorship is different from that of
used in media content which is known as the act of suppressing
unwanted parts from the content.



the value hi to denote the number of episodes available to the user
during session i. This censorship threshold depends on the content
that is viewed in the session; hence, it is session dependent. This
is different from the standard censorship setting in which a fixed
censorship threshold across all observations is induced by, for in-
stance, the ending of a clinical trial [14] or user inactivity after a
certain point on the study [9].

4.3 Censored Poisson Regression with Latent
Factors

We now define our consumption model that incorporates (1) -
session censorship, (2) - the contribution of user context in the
form of covariates, and (3) - the heterogeneous nature of the user
population.
Censorship – We define ci = I(vi = hi) as a binary variable
indicating whether the i

th session is censored, where the user has
consumed the latest available episodes in the session. By assuming
independence across N observed sessions, the likelihood of single
Poisson distribution with censorship is obtained as:

Pr(v;�) =
NY

i=1


�

vi

e

�
vi!

�1�ci

Pr(vi � hi)

�ci

(2)

Note that in Equation (2), the likelihood of viewership for a cen-
sored observation is considered as Pr(vi � hi) to take into ac-
count the chance that the user could continue watching any further
episode(s) of the series, had the episode(s) been available for view-
ing at the time.
External Factors – Each session i can be represented by a group
of external factors, such as the viewing device used, the time
of day, etc. These constitute the vector of d covariates xi =

(xi,1, . . . , xi,d)
>. Instead of assuming a fixed � parameter for all

sessions (as in Eq. (1) and (2)), a session dependent parameter �i is
introduced to capture the dependency of consumption rate on these
factors as discussed in Section 3. We use the log-linear function
commonly used as the link function in Poisson regressions,

log �i = x

>
i � (3)

where � = (�1, . . . ,�d)
> is the corresponding coefficient vector.

This facilitates the derivation of our EM algorithm presented later.
Mixture Components – Finally, to account for the variability in
the behavior of the user population, we consider a mixture of Pois-
son distributions to model the heterogeneous consumption behavior
between sessions.

Let K denote the number of mixture components, and k 2
{1 . . .K} denote the index of each component. The probability
mass for vi can be written as follows:

Pr(vi;�,⇡) =
KX

k=1

⇡k


�

vi
i,k

e

�i,k
vi!

�1�ci

Prk(vi � hi)

�ci

(4)

where ⇡k is the weight of the mixture component k, ⇡k � 0,PK
k=1 ⇡k = 1, and Prk(vi � hi) is the likelihood of watching

at least hi episodes in the session according to component k of the
mixture model. Finally, the likelihood of all N sessions is:

Pr(v;�,⇡) =
NY

i=1

KX

k=1

⇡k


�

vi
i,k

e

�i,k
vi!

�1�ci

Prk(vi � hi)

�ci

(5)

Note that, the session dependent Poisson parameter and the co-
efficient vector, respectively denoted by �i,k and �k, both depend
on the component k. In other words, the heterogeneity of the user
population results in various behavioral patterns that are captured

Table 2: List of notations.
Notation Definition

xi Covariate vector of each session i
vi The number of views in each session i
hi The number of episodes available for session i
ci Censorship indicator for each session i
�i,k Poisson parameter for component k 2 {1, . . . ,K} and

corresponding to session i
�k Coefficient vector for component k 2 {1, . . . ,K}
⇡k Mixture weight for component k 2 {1, . . . ,K}

by different variants of these parameters. Similar to Equation (3),
the log-linear relation holds between these two parameters in each
component k: log(�i,k) = x

>
i �k. It is noted that the censored

likelihood Prk(vi � hi) is calculated using the session dependent
consumption rate �k,i, hence, it is also a function of �k. A sum-
mary of notations is provided in Table 2.

4.4 Parameter Estimation
We consider Maximum Likelihood Estimation (MLE) for the

model parameters ⇥ = {�k,⇡k}Kk=1 given N observed sessions,
their covariates, and the session dependent censorship thresholds.

A closed-form MLE is intractable in our mixture model, hence
we instead use an Expectation-Maximization (EM) based approxi-
mation [5, 8]. We note that the introduction of covariates and ses-
sion dependent censorship requires the derivation of a specific EM
algorithm for our model.

Let zi 2 {1, . . . ,K} be the mixture assignment of session i.
Our goal is to lower bound the data likelihood function by,

log Pr(vi;⇥) �
KX

k=1

q(zi = k) log

Pr(vi, zi = k;⇥)

q(zi = k)

(6)

and maximize this lower-bound. In the E-Step of the iteration t of
the algorithm, we fix ⇥ = ⇥

(t�1) from M-Step of the previous
iteration and maximize the lower-bound with respect to all distri-
butions q(z); in the M-Step, we fix q(z) and find the optimum ⇥

(t)

that maximizes the lower-bound. The E-Step and M-Step are con-
ducted alternatively.
E-Step: By Jensen’s inequality, the optimal solution for q(z) is
q(zi = k) = Pr(zi = k|vi;⇥(t�1)

) with ⇥

(t�1) from previous
iteration. This can be calculated explicitly,

⌧

(t�1)
i,k := Pr(zi = k|vi;⇥(t�1)

) (7)

=

⇡

(t�1)
k


(�

(t�1)
i,k )vi

e
�
(t�1)
i,k vi !

�1�ci

Pr

(t�1)
k (vi � hi)

�ci

PK
j=1 ⇡

(t�1)
j


(�

(t�1)
i,j )vi

e
�
(t�1)
i,j vi !

�1�ci

Pr

(t�1)
k (vi � hi)

�ci

where Pr

(t�1)
k is calculated using ⇥

(t�1). Note that ⌧i,k is the
posterior probability of the session i being sampled from mixture
component k.
M-Step: Using Eq (7), the lower-bound in Eq. (6) after E-Step can
be written as:

Q(⇥;⇥

(t�1)
) =

NX

i=1

KX

k=1

⌧

(t�1)
i,k


log(⇡k) + ci log(Prk(vi � hi))

+(1� ci)(vi log(�i,k)� log(vi !)� �i,k)

�
(8)



Now we optimize ⇥

(t)
= argmax Q(⇥;⇥

(t�1)
). For ⇡k:

⇡

(t)
k = argmax

NX

i=1

⌧

(t�1)
i,k log(⇡k) + �(1�

X

j

⇡j) (9)

where � is the Lagrange multiplier to take into account the con-
straint that ⇡j values must sum to one. For �k, we numerically
solve the following problem:

�(t)
k = argmax

NX

i=1

⌧

(t�1)
i,k


(1� ci)(vi log(�i,k)� �i,k) (10)

+ ci log(Prk(vi � hi))

�

The detailed derivations can be found in Appendix.

Algorithm 1 Censored EM Algorithm: EM-fit

Input: Session covariates {xi}, consumption observations {vi},
censorship thresholds {hi}, number of iterations T , number of
components K.
Initialize parameters ⇥(0)

= (⇡(0)
,�(0)

)

for t 2 1 . . . T do
E-Step: Compute ⌧

(t)
i,k using Equation 7, for i = 1 . . . N ,

k = 1 . . .K.
M-Step: Compute ⇡

(t)
k using Equation 9, and �(t)

k using
Equation 10, for k = 1 . . .K

end for
Output: Estimated parameter values, b⇥ = (⇡(T )

,�(T )
)

We present the pseudocode of the estimation algorithm, called
EM-fit , in Algorithm 1. EM-fit receives three session depen-
dent inputs: covariates xi, episode counts vi, and the corresponding
censorship criterion hi for sessions i = 1, . . . , N , and the number
of components K. EM-fit iterates over the E-Step and M-Step
for T steps, where T is the index of the step in which the con-
vergence criterion is satisfied. We use the common convergence
criterion that the algorithm is deemed to have converged when the
change in the data log-likelihood falls below some threshold, which
we specify in Section 5.

5. EXPERIMENTAL STUDY
In this section, we present results on the real-world VOD view-

ership dataset described in Section 3. We first show that our model
can fit better than simpler models and that each of our factors con-
tribute to a more accurate fit to our observed data. We then show
that our model can be used to predict user behaviors in two applica-
tion scenarios: inferring the number of episodes viewed in a session
and classifying if the user will continue to watch the next episode.

To infer our model parameters, we run Algorithm 1. For the
specific choice of covariates, xi, we consider the following:

� The title of television series, e.g., Arrow, Homeland
� The hour in the day when a session starts, e.g., 7 AM, 10 PM
� The day of week when a session starts, e.g., Monday
� The device used in the session, e.g., iPad, iPhone, television
All these features are binarized and concatenated, resulting in a

feature vector for each session of dimension 104.
We run Algorithm 1 until the change of the log-likelihood on

training data is below 0.01%. For updating the coefficient vectors,
�k, we use gradient descent and stop when the frobenius norm of
gradient is below 0.01. Parameter vector �(0)

k is randomly initial-
ized and ⇡(0) is uniformly initialized from the K � 1 dimensional

simplex. To avoid local minimas, we use 10 random initialization
for Algorithm 1. Finally, all results in this section are presented
with respect to 5-fold cross validation.

5.1 Model Selection
First the hypothesis of using the Poisson distribution is tested.

We compare the Poisson distribution against another candidate, ge-
ometric distribution. The estimation for geometric distribution with
covariates, censorship, and latent factors can be similarly derived as
we performed for the Poisson case in Section 4. Figure 2 compares
the empirical probabilities of the observed number of episodes per
session with the fitted models for a single Poisson, single geomet-
ric distribution, mixture Poisson (K = 3) and mixture geometric
(K = 3). We find the average log-likelihood to be �1.30 for single
Geometric, �1.34 for single Poisson, �1.27 for mixture of Geo-
metric, and �1.12 for mixture of Poisson. We find that although
a single geometric distribution can fit better than a single Poisson
distribution, the mixture of Poisson can fit best to the data. The
figure demonstrates that this is especially true with respect to the
tail of the distribution. It is also known that mixture of Poisson
distributions often have thick tails which make them suitable for
long-tailed data [19]. This reinforces our decision to use the Pois-
son distribution in our model.
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Figure 2: The learned model for single Poisson/Geometric (upper), and
mixture Poisson/Geometric (bottom) on the VOD data.

Next, we consider the choice of the number of mixture com-
ponents K. The predictive log-likelihood is used as a performance
metric and evaluated using 5-fold cross-validation. Specifically, we
estimate the model parameters {�k,⇡k}Kk=1 from the training set
and then evaluate the log-likelihood of the hold-out validation set
for various values of K. We also normalize the log-likelihood by
the number of sessions in the validation set.

The average predictive log-likelihood across 5-fold cross-
validation as well as the standard deviation of this value are de-
picted in Figure 3. We observe that K = 3 is the knee point of the
curve: by increasing K = 1 to K = 3 the likelihood improves by a
large margin. Meanwhile, for K > 3 there is no significant change
in likelihood. This suggests that K = 3 is a good candidate. As a
result, we fix K = 3 for the rest of the paper.

5.2 Model Component Performance
We next compare the performance of our proposed model against

multiple baselines in fitting to the real-world data. These baselines
can be viewed as different combinations of the three key factors -
mixture, censorship, and covariates. They are summarized in Ta-
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Figure 3: Predictive log-likelihood for various values of K.

Table 3: Settings of the proposed model and various baselines. ‘Y’ repre-
sents the existence of mixture, censorship or covariates in the model. ‘N’
represents their absence. Our model is ‘H’.

Description ID Mixture Censoring Covariate
Single Poisson A N N N
Poisson Regression B N N Y
Mixture Poisson C Y N N
Poisson Regression D Y N Y
with Latent Factors
Censored Poisson E N Y N
Censored Single F N Y Y
Poisson Regression
Censored Mixture Poisson G Y Y N
Proposed Model H Y Y Y
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Figure 4: Predictive log-likelihood of the proposed model comparing to
various baselines as detailed in Table 3. The predictive log-likelihood mea-
sures the goodness of fit of each model.

ble 3. For instance, the censored Poisson regression model (F) is a
special case of our model when K = 1. As a consequence, we can
understand the importance and significance of these components
of our model. We note that EM-based estimation algorithms can
similarly be derived for these models.

We use predictive log-likelihood on 5-fold cross-validation as
the performance metric to evaluate the robustness of different set-
tings as adding modeling complexity does not necessarily improve
the predictive likelihood. The results are shown in Figure 4. The
log-likelihoods are normalized by the number of sessions in each
validation set and the standard deviations over 5-folds are reported.

Overall, our model achieves the best predictive accuracy com-
pared to all the baselines. We find that introduction of latent factors,
the censorship, and the covariates all contribute significantly to im-
proving modeling accuracy. One can compare the proposed model
(H) against the model without mixtures (F) and observe that adding
these mixture components can improve the modeling accuracy by a
large margin. Additionally, the improvement of our model (H) ver-
sus one without censoring (D) shows that incorporating censorship
knowledge also significantly enhances the modeling accuracy.

5.3 Use Case: Predicting the number of
episodes in a session

We consider predicting the number of episodes a user will watch
given information available at the beginning of a session. Noting
that we observe the covariates xi and the censorship threshold hi

when session starts, we predict the number of episodes a user will
watch v̂i as,

v̂i = E(v;�,⇡) =
KX

k=1

⇡kE(v;�k) (11)

where E(v;�k) =
Phi�1

j=0 j Pr(j; �i,k)+hi Prk(v � hi; �i,k)

is the censored expectation of a single Poisson distribution, with
�i,k = exp(x

>
i �k) as the session dependent Poisson rates and the

parameters �k and ⇡k are learned from the training set.
We predict the number of episodes viewed in a session as the

expectation based on the session dependent covariates and censor-
ship threshold. It is noted that Eq. (11) guarantees that v̂i  hi in
prediction using our censored model.

Table 4: The predictive root-mean-square-error (Pred.RMSE) and the pre-
dictive mean absolute error (Pred.MAE) of the proposed model against var-
ious statistical and regression baselines.

Description ID Pred.RMSE Pred.MAE
Single Poisson A 1.573± 0.048 1.027± 0.011
Poisson Regression B 1.513± 0.047 0.995± 0.009
Mixture Poisson C 1.573± 0.048 1.027± 0.011
Poisson Regression D 1.513± 0.049 0.993± 0.009
with Latent Factors
Censored Poisson E 1.517± 0.049 0.920± 0.016
Censored Poisson F 1.456± 0.051 0.895± 0.015
Regression
Censored Mixture G 1.514± 0.050 0.926± 0.017
Poisson
Proposed Model H 1.452± 0.052 0.895± 0.016
Linear Regression L2 1.517± 0.047 0.993± 0.008
Thresholded Linear TL2 1.512± 0.046 0.988± 0.008
Regression
`1-Regularized Lasso 1.624± 0.048 0.924± 0.015
Linear Regression

The problem of predicting vi when a session starts can be viewed
as a regression problem where the response variable is vi and the
regression features are xi and hi. Therefore, we compare our al-
gorithm against standard linear regression, `1 regularized linear re-
gression (Lasso), and Poisson regression (log-linear regression, the
setting ‘B’ as in Table 3). Additionally, we perform a version of lin-
ear regression that considers the censorship threshold hi, such that
for linear coefficients �, the inferred value is bvi = min

�
hi,x

>
i �

�
,

we refer to this as Thresholded Linear Regression.
As evaluation metrics, we compute the predictive root mean

square error (RMSE) and mean absolute error (MAE) on the val-
idation set using 5-fold cross-validation. We compare our model
against the statistical baselines in Section 5.2 and the regression
baselines, using the same setting id as in Table 3 for consistency.
The mean and standard deviation across 5-fold cross-validation for
Predictive RMSE and MAE are summarized in Table 4.

As it is observed in the table, the proposed model (‘H’) outper-
forms the regression baselines (linear regression, Lasso, Poisson
regression) in both RMSE and MAE metrics. We note that all lin-
ear regression methods directly minimize the square error as train-
ing objective, hence they are given the advantage in term of RMSE
metric. Therefore the improvement is not expected to be signifi-
cant. Our model, however, outperforms these baselines in predic-
tion while not explicitly optimizing RMSE or MAE. This suggests



that our model can better predict the user behavior given the ex-
ternal factors. We note that the censored Poisson Regression (‘F’)
can predict as accurate as our model, due to the fact the we use
the expectation in Eq. (11) and the latent mixture assignment is
marginalized.

5.4 Use Case: Predicting if the user will watch
the next episode

Another application of our viewership model is to predict the
continuation of a viewing session. Specifically, given the number
of episodes a user has already watched in the middle of a session
vc, we would like to predict if they will continue to watch the next
episode. Given our model, we use Pr(v > vc|vc;�,⇡) as the
probability of continuation, where �,⇡ are learned from the train-
ing set. This conditional probability can be calculated as,

Pr(v > vc|vc;�,⇡) =
KX

z=1

pz(v > vc|vc;�,⇡)p(z|vc;�,⇡)

=

KX

z=1

pz(v > vc;�,⇡)
pz(v � vc;�,⇡)

p(z|vc;�,⇡)

(12)
where p(z|vc;�,⇡) is the posterior likelihood of component

membership given the current watched episodes as in Eq. (7).
We then predict the event of continuation by thresholding this

conditional probability. Note that this prediction problem is a stan-
dard binary classification problem where class labels are 1 if the
user continued to watch or 0 if the user stopped. Therefore, we
compare our model against the standard classification algorithms
using logistic regression and support vector machines (SVMs).

Table 5: The Area Under Curve (AUC) and Cross Entropy of the proposed
model compared against various statistical and classification baselines.

Description ID AUC Cross Entropy
Single Poisson A 0.438± 0.003 �0.803± 0.006
Poisson Regression B 0.539± 0.004 �0.754± 0.006
Mixture Poisson C 0.530± 0.009 �0.727± 0.004
Poisson Regression D 0.618± 0.003 �0.703± 0.004
with Latent Factors
Censored Poisson E 0.572± 0.006 �0.711± 0.009
Censored Poisson F 0.642± 0.008 �0.670± 0.009
Regression
Censored Mixture G 0.631± 0.007 �0.652± 0.005
Poisson
Proposed model H 0.687± 0.005 �0.636± 0.006
`2-Regularized LR 0.631± 0.005 �0.664± 0.002
Logistic Regression
Linear SVM SVM 0.617± 0.005 NA

For each session i with vi television episodes, we can construct
vi training or testing samples at the end of each episode. We first
create 5-fold cross-validation on the sessions and further convert
each session in training and validation sets into continuation data.
We consider a collection of performance metrics: the Area Under
Curve (AUC), the predictive cross entropy, and the correct classifi-
cation rate evaluated on validation sets. The cross entropy can be
computed as

P
i

Pvi
j=1 yj log(p

+
j ) + (1 � yj) log(1 � p

+
j ) aver-

aged over all test samples, where yj is the label of continuation and
p

+
j is the probability of continuation for j-th test sample.
Table 5 summarizes the prediction result for our model against

the statistical baselines summarized in Section 5.2 and the classi-
fication baselines. The mean and standard deviation across the 5-
folds are reported. We observe that in Table 5, the proposed model
outperforms the compared approaches in all performance metrics.
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Figure 5: Classification rates on validation set when considering the cur-
rent episode for the user.

We also investigate how the prediction accuracy changes as the
user watches more episodes. Specifically, we design the exper-
iment to only predict the continuation when vc is above a cer-
tain threshold. Figure 5 summarizes the results for our model
and standard classification algorithms. Note that the number of
training/validation samples are smaller and more biased when the
threshold for vc increases. Therefore, we also include the simple
majority votes rules as baselines. For simple majority vote, we
predict a user would continue after watching v episodes if most
training samples at the end of v episodes continued. As we can see
in Figure 5, the prediction accuracy increases as the threshold on
vc increases. This matches the intuition that the event of contin-
uation is easier to predict if we have more observation history in
a single session. However, our algorithm consistently outperforms
the baselines. This shows that our model can accurately infer the
behavior type of a session and make predictions as we gather more
observations in a session.

6. BINGE WATCHING CHARACTERIZA-
TION AND DISCUSSION

The experimental study in Section 5 validates that our proposed
model both fits to the data and also has applications in inferring user
viewing behavior. We can also use this model to segment particular
behaviors automatically from our model inference algorithm. In
this section, we discuss how our model can be used to categorize
and interpret distinct types of viewing behavior. In particular, we
focus on the over-conusumption of content, or “binge watching”
behavior.

6.1 Identifying Binge Watching Behavior
We begin by considering the real-world implications of our

learned mixture model. Given K = 3 mixture components, Fig-
ure 6 depicts the distribution of each component of the learned
model for the three most popular television series in the dataset,
“Walking Dead”, “Homeland”, and “The Big Bang Theory”.

We find that the learned mixture components reveal three distinct
behaviors that are consistent across the dataset. (1) The component
with the smallest � captures the sessions where the user watches a
few (i.e., one or two) episodes in a session. (2) The component
with the � value in between those of the other two corresponds
to the sessions in which user consumes an above average number
of episodes (i.e., 3 to 7) as indicated by the green curves in Fig-
ure 6. (3) The third component with the largest consumption rate �
(the red curves in Figure 6) represents users who watch an extreme
number of episodes in a session.

We find these different types of behavior to be consistent not
only across the examples in Figure 6 but also hold for all data sam-
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Figure 6: Empirical pmf and the fitted distribution of our model of television watching sessions for “The Walking Dead” (left), “Homeland” (middle), and
“The Big Bang Theory” (right). The K = 3 mixture components are shown.

ples. This is validated by Figure 7 in which we plot the distri-
butions for the learned Poisson parameters �i,k for each compo-
nent (k = 1, 2, 3) and across all viewing sessions3. Overall, the
consumption rates for the three components are distinct. The av-
erage consumption rate for the second component is 2.9 episodes
per session and is 6.8 for the third component. These two compo-
nents are in accordance with the “binge watching” in prior studies
[3, 17]. This motivates us to define these two component as the
binge-watching components.

consumption rate 6+1, unit: episode
0 5 10 15 20 25

1st Comp.

2nd Comp.

3rd Comp.

Figure 7: Box-plot of the distribution of �i,k + 1 across the three com-
poenents. The central mark is the median, the edges of the box are the 25th
and 75th percentiles. * indicates the mean. The color scheme is consistent
with Figure 6.

A Data-Driven Binge Watching Definition - Given the two com-
ponents associated with binge watching behavior, we then iden-
tify a binge-watching session by calculating Pr(zi = k|vi;�,⇡)
according to (7), the posterior mixture assignment of session i to
component k. Formally, we define a session to be a binge-watching
session if k = 2 or k = 3 is the most likely mixture assignment
of the session. This provides a fully data-driven approach to define
and infer binge-watching behavior.
Different Types of Binge Watching - While existing studies char-
acterize binge-watching as a single type of viewing behavior [3,
17], our model reveals that there are in fact two sub-classes of
binge-watching. Specifically, the component k = 3 captures the
sessions in which a significantly large number of episodes is con-
sumed. This is a rather extreme behavior than the component k =

2. Therefore, we define the component k = 3 as “hyper-binge”
watching and corresponding sessions as “hyper-binge” watching
sessions. We believe this gives a finer-grain analysis of binge-
watching behavior. Similarly, we refer to sessions corresponding
to component k = 2 as the “binge” watching sessions, and the
ones corresponding to component k = 1 as the “regular” sessions.

Using this definition, we find that 22.2% of all watching ses-
sions fall in one category of binge watching, i.e., binge watching
sessions or hyper-binge watching sessions. To be more explicit,
20.1% of sessions are binging sessions and 2.1% of sessions are
hyper-binging sessions. This indicates that “hyper-binging” is a
rare yet extreme viewing behavior.
3Noting that we subtract 1 from vi to simplify the model derivation,
we plot �+ 1.

Content and Context-Aware Binge Watching Definition - Our
model learns differences between the viewing behavior for different
types of shows, days of the week, and devices used for watching.
These are summarized in Figures 8, 9, and 10. In these figures, the
distributions of �i,k across the three components are shown.

Recall that in most binge-watching studies so far, a one-size-fits-
all definition of binging is used [17]. However, Figure 8 shows
that binge-watching in our model is adapted to the content of spe-
cific watching sessions. For example, in Figure 8, a binge watch-
ing session (k = 2) for the 20-minutes-long comedy “How I Met
Your Mother” has on average more than five episodes while the
1-hour long action drama “Homeland” has on average only two
episodes when binging. Similarly, a hyper-binge watching session
(k = 3) for “How I Met Your Mother” has on average more than
10 episodes per session while that of “Homeland” reveals only four
episodes. We can also observe that the less story-focused com-
edy, “The Big Bang Theory”, is binge-watched and hyper-binge
watched with a smaller consumption rate than “How I Met Your
Mother”, which is narrative-driven (i.e., the episodes are connected
by a common storyline).

Figures 9 and 10 demonstrate that our binge watching definition
is context-aware. We observe that binge and hyper-binge watch-
ing sessions on Friday, Saturday, and Sunday have more episodes
viewed compared to that of weekdays. Similarly, the dominance of
using TV devices (i.e., tv and blu-ray) over mobile (i.e., iPad, and
iPhone) appears to be more significance for binge watching and
hyper-binge watching sessions compared to regular sessions.

Finally, we consistently observe the distinction between the
hyper-binge component k = 3 and the binge component k = 2

in terms of consumption rate across different contents and context
in Figures 8, 9, and 10. In addition, we note that the consumption
rates for the first component are between one and two episodes per
session. This suggests that the regular component k = 1 captures
a uniform behavior across all sessions.

6.2 Binge Watching Behavior Characteriza-
tion

A characterization of binge watching behavior is presented here
in terms of (1) binge watching behavior across individual users, (2)
difference in viewing patterns between binging and non-binging
sessions, and (3) the transition patterns among different viewing
behavior types.
User Characterization - Given the most likely component assign-
ment for all sessions of a particular user, we calculate the fraction
of sessions that correspond to one of the three components. For
each component, we sort the fraction of users in ascending order
and summarize the results in Figure 11. We note that the points on
different curves with the same x-value may not correspond to the
same user. Figure 11 indicates that binge-watching is not a uniform
behavior across the user-population. We find that 64% of users in
our dataset binge-watched at least once while 11% of users hyper-
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Figure 8: Box-plot of the distribution of �i,k across the three components for four TV series: “The Walking Dead” (WD), “Homeland” (HL), “The Big Bang
Theory” (TBBT), and “How I Met Your Mother” (HIMYM). ⇤ indicates the mean. Left: Regular, Middle: Binge, Right: Hyper-binge.
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Figure 9: Box-plot of the distribution of �i,k across the three components for different days in the week. ⇤ indicates the mean. Left: Regular, Middle:
Binge, Right: Hyper-binge.
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Figure 10: Box-plot of the distribution of �i,k across the three components for a group of devices. ⇤ indicates the mean. ‘www’ denotes watching sessions
on web-browsers from non-mobile devices. Left: Regular, Middle: Binge, Right: Hyper-binge.
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Figure 11: Distribution of different types of viewing sessions across users.

binged at least once. These numbers are consistent with the ones
reported in prior user studies [3, 17], conveying that binge watching
is popular among viewers. We also observe that for 7.6% of users,
all their watching sessions are binge-watching. Similarly, 20% of
users binge-watch in more than half of their sessions.
Viewing Patterns - While it is common that episodes are watched
in a sequential order in a session to catch-up content, we find that
this is not necessarily true for binge-watching. For instance, user
might watch episode 10 and then go back to episode 7 or jump to
episode 15 in a session. Table 6 summarizes the percentage of ses-
sions that are watched in a sequential order across different compo-
nents. While regular sessions are almost entirely sequential (97%),
we observe 84% of binge watching sessions and only 76% of the
hyper-binge watching sessions are sequential, indicating that binge
viewers are more likely to watch content out-of-order.

A detailed investigation shows that this distinction in viewing
patterns also depends on specific content. For example, story-
driven series “Walking Dead”, “Homeland”, and “How I Met Your
Mother” are more likely to be watched in sequential order for
both binge and non-binge watching sessions. In contrast, binge-
watching implies a different viewing pattern for series like “The
Big Bang Theory”, “Modern Family”, and “NCIS” where each

Table 6: Fraction of sessions with sequential viewing across components.

Title Regular Binge Hyper-binge
All Series 97% 84% 76%

Walking Dead 98% 87% 85%
Homeland 98% 94% 96%
HIMYM 97% 88% 77%

Big Bang Theory 87% 56% 52%
Modern Family 83% 59% 78%

NCIS 98% 71% 67%

Table 7: Transition probability of next session being type j (j-th column)
given current session being type i (i-th row).

Regular Binge Hyper-binge
Regular 0.82 0.16 0.02
Binge 0.66 0.30 0.04

Hyper-binge 0.59 0.32 0.09

episode is self-contained. We find that only 56% of binge watching
and 52% of hyper-binge watching sessions of “The Big Bang The-
ory” are viewed in a sequential order. In other words, potentially
half of the binge-watching sessions of “The Big Bang Theory” are
not primarily for “catching-up” on the series.
Transition between Behavior Types - Given the component as-
signment of each session, we can calculate the probability of the
next session being type j given the previous session being type i of
the same user. This standard transition probability matrix is illus-
trated in Table 7. We find that a user currently binging is twice as
likely to binge in their next session compared with someone cur-
rently in a regular session. We also observe that a majority of binge
watchers will not binge on content in their next session, indicating
that binge watching is not a consistent behavior for users.

7. CONCLUSION
The combination of video on-demand services and access to en-



tire collections of television episodes has led to the rise of binge
watching behavior. In this paper, we offered a “first of its kind”
study of viewer binge watching habits from real-world video on-
demand records. We characterized the real-world observations to
determine relevant context covariates and limitations – such as data
censorship. Using these insights, we constructed a statistical view-
ership model and validated that it fits better to the data than all
other tested models. We then showed how this viewership model
can be used to infer features of the user viewing session, such as
the number of episodes viewed and whether the user will continue
watching. Finally, we exploit the properties of this model to intro-
duce a methodology that automatically extracts attributes of binge
watching behavior. Our characterization reveals different types of
binging behavior, the prevalence of binge watchers viewing con-
tent out-of-order, and that binge watching is not a consistent be-
havior among our users. Next steps include modeling user-level
behavior, examination of mechanisms to influence binge watching
behavior, analysis of binge consumption of other types of products
(e.g., video games, gambling, etc.) and how it differs from televi-
sion binge watching.
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APPENDIX
We present the details of derivation for Algorithm 1 for parameter
estimation in M-step. Recall that the overall objective is,

⇥

(t)
=argmax

PN
i=1

PK
k=1 ⌧

(t�1)
i,k [log(⇡k) + (1� ci)(vi log(�i,k)

� log(vi !)� �i,k) + ci log(Prk(vi � hi))] (13)

subject to
P

k ⇡k = 1,⇡k � 0. For mixture weights it is straight-
forward to show ⇡

(t)
k /

P
i ⌧

(t�1)
i,k . For �k’s, we optimize,

max

�k

PN
i=1 ⌧

(t�1)
i,k [(1� ci)(vi log(�i,k)� �i,k) + ci log(Prk(vi � hi))]

where �i,k = exp(x

>
i �k) and Prk’s also depend on �k. We solve

this optimization numerically using gradient descent. We first cal-
culate r�k log(Prk(vi � hi)). For hi > 0, we have,

r�k log(Prk(vi � hi)) =
1

Prk(vi � hi)
r�k{

P1
j=hi

�j
i,k

e
�i,k j !

}

=

1

Prk(vi � hi)

P1
j=hi

�j
i,kre

��i,k+e
��i,kr�j

i,k

j ! (14)

=

�i,kxi

Prk(vi � hi)

P1
j=hi

�
�j
i,ke

��i,k

j ! +

�j�1
i,k e

��i,k

(j�1) ! (15)

=

�i,kPrk(vi = hi � 1)

Prk(vi � hi)
xi (16)

On the other hand, r�k log(Prk(vi � hi)) = 0 if hi = 0. Over-
all, we have,

r�k l(⇥) =

NX

i=1

⌧

t�1
i,k [(1� ci)(vi � �i,k) + ci�i,k

Prk(vi = hi � 1)

Prk(vi � hi)
]xi


