
Deploying Analytics with the
Portable Format for Analytics (PFA)

Jim Pivarski
Open Data Group Inc.

400 Lathrop Ave Suite 90
River Forest IL USA

Collin Bennett
Open Data Group Inc.

400 Lathrop Ave Suite 90
River Forest IL USA

Robert L. Grossman
∗

Open Data Group Inc.
400 Lathrop Ave Suite 90

River Forest IL USA

ABSTRACT
We introduce a new language for deploying analytic models
into products, services and operational systems called the
Portable Format for Analytics (PFA). PFA is an example
of what is sometimes called a model interchange format, a
language for describing analytic models that is independent
of specific tools, applications or systems. Model interchange
formats allow one application (the model producer) to ex-
port models and another application (the model consumer
or scoring engine) to import models. The core idea behind
PFA is to support the safe execution of statistical func-
tions, mathematical functions, and machine learning algo-
rithms and their compositions within a safe execution envi-
ronment. With this approach, the common analytic models
used in data science can be implemented, as well as the data
transformations and data aggregations required for pre- and
post-processing data. PFA compliant scoring engines can
be extended by adding new user defined functions described
in PFA. We describe the design of PFA. A Data Mining
Group (DMG) Working Group is developing the PFA stan-
dard. The current version is 0.8.1 and contains many of the
commonly used statistical and machine learning models, in-
cluding regression, clustering, support vector machines, neu-
ral networks, etc. We also describe two implementations of
Hadrian, one in Scala and one in Python. We discuss four
case studies that use PFA and Hadrian to specify analytic
models, including two that are deployed in operations at
client sites.

Keywords
model producers, scoring engines, Portable Format for An-
alytics, PFA, PMML, deploying analytics

∗RLG is also a faculty member at the University of Chicago.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

KDD ’16 August 13-17, 2016, San Francisco, CA, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4232-2/16/08.

DOI: http://dx.doi.org/10.1145/2939672.2939731

1. INTRODUCTION
The KDD research community has traditionally been fo-

cused on developing new algorithms and developing systems
for managing and analyzing data. This is the one of the
cores of data science. Technology is also required for deploy-
ing algorithms and statistical models in analytic products,
analytic services, and operational systems. Sometimes the
term analytic operations is used for this component of the
KDD process.

A problem that has haunted the KDD community for the
last twenty years is how to efficiently deploy the analytic
models developed by data scientists into products and ser-
vices that must live in operational environments, which usu-
ally have stringent service level requirements. Because of
these requirements, most organizations do not allow code to
be integrated into operations without careful and extensive
testing. See Figure 1.

In this paper, we introduce a new language called the
Portable Format for Analytics (PFA), describe some of the
ways that PFA differs from the Predictive Model Markup
Language (PMML), the current dominant standard for de-
scribing analytic models [1], and discuss some of the lessons
that we have learned working with PFA over the past two
years in various deployed analytic applications.

Contributions of this Paper This paper makes four main
contributions to the KDD community. The first contribu-
tion is that we introduce a language (PFA) for describing
statistical and data mining models that overcomes some of
the important limitations of PMML. The second contribu-
tion is that we have developed and deployed two implemen-
tations of PFA-compliant scoring engines (one in Scala and
one in Python), which are available to KDD community for
personal and research use. The third contribution is that
we have described two deployments into production sites of
the Scala scoring engine and discussed some of the lessons
learned from these deployments. The fourth contribution
is calling attention to PFA and to the Data Mining Group
(DMG) PFA Working Group so that others in the KDD re-
search community can contribute to the further development
of the PFA standard.

2. ARCHITECTURES FOR DEPLOYING
ANALYTICS

An analytic architecture was developed over fifteen years
ago that separated systems, applications and tools that pro-
duced analytic models from those that consumed analytic
models [2, 3]. Model producers are part of the development

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. Copyrights for third-party components of this work must
be honored. For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).
KDD '16, August 13-17, 2016, San Francisco, CA, USA
ACM 978-1-4503-4232-2/16/08.
http://dx.doi.org/10.1145/2939672.2939731

Exploratory Data Analysis Get and clean the data

Build model in dev/modeling
environment

Deploy model in operational
systems with scoring
application

Monitor performance and
employ champion-
challenger methodology to
develop improved model

Analytic modeling

Analytic operations

Deploy
model

Log
files

Retire model and deploy
improved model

Modeling Environment

Enterprise IT Environment

Figure 1: Analytic model producers and analytic model consumers (scoring engines).

or data modeling environment, while model consumers are
part of the operational environment. See Figure 1.

Model producers export models in a language for ana-
lytic models (sometimes called a model interchange format),
while model consumers import analytic models. With this
approach, multiple systems, applications and tools can be
used by data scientists for exporting models, and a single
scoring engine can consume all of them in an operational
environment.

Over time, the term scoring engine began to be used as
a synonym for model consumer. As shown in Figure 3, the
scoring engine is usually embedded in deployment environ-
ment that includes the inputs and outputs of the scoring
engine. For example, scoring engines may be integrated
with web applications and services, with databases, with
enterprise service buses, with distributed data processing
systems, with real time distributed messaging systems, etc.

It is important to note that with this architecture, the
analytic models that are described in the model interchange
format are designed to be written and read by programs,
not by humans. In other words, models in the model in-
terchange format are designed to be machine readable, not
human readable.

3. LANGUAGES FOR DEPLOYING
ANALYTICS

The model interchange format that has gained the most
adoption is the Predictive Model Markup Language (PMML)
[3], which is an XML-based markup language for describing
statistical and data mining models. The PMML standard
[1, 4] supports the models most commonly used by data sci-
entists, including regression, clustering, support vector ma-
chines, neural networks, etc.

PMML represented a significant step forward in terms of
providing a mechanism for different systems, applications
and tools to exchange analytic models. On the other hand,

over time limitations of PMML became apparent. Perhaps,
the most common was that PMML was not extensible and
did not support all the code required to deploy analytic
models, since it has relatively limited functionality for the
pre- and post-processing required by most deployed appli-
cations, and many deployed applications did not use a sin-
gle PMML model, but rather workflows built from multiple
PMML models.

PMML is a specification for a model interchange format.
Once the PMML Working Group approves a specification
for a new PMML model, PMML-compliant scoring engines
are updated by their vendors or developers to add support
for that model. Although the PMML Working Group works
hard on the standard, overtime the specification grew more
and more complicated, raising the work required to develop
a PMML compliant scoring engine.

The goals for PFA were to define a language for analytic
models with the following properties:

1. The language should be extensible so that users and
system developers can define their models and pre- and
post-processing code.

2. The language should allow models to be composed so
that chains of models and hierarchical models can be
supported and allow multiple models to be combined
into workflows.

3. The language should be easy to integrate into today’s
distributed and event-based data processing platforms,
such as Hadoop [5], Spark and Storm [6].

4. The language should be “safe” to deploy in IT opera-
tional environments.

As mentioned, PMML struggled with the first three re-
quirements. The approach taken with PFA was to define
a language in which JSON-based functions could be safely

composed and the functions were rich enough to define the
common analytic models, as well as the common pre- and
post- processing used by data scientists. The language and
standard support user defined functions, which supports Re-
quirements 1 and 2. Since the language is JSON-based and
uses Avro for data serialization, it integrates easily into to-
day’s distributed and event based data processing platforms
(Requirement 3).

Although PFA is essentially a programming language, it
is limited in ways that make it safer to use than conven-
tional programming languages (Requirement 4). A scoring
engine implemented in C, Python, or Java could access the
underlying file system, operating system, or network, but a
scoring engine implemented in PFA can only transform the
data that it is given. Therefore, the security issues involved
in running arbitrary code are not raised by PFA.

As we will see below, PFA supports functions for data
transformations, data aggregations, data filtering, as well as
the basic mathematical and statistical functions. Since these
core functions (“data mining or analytic primitives”) can be
composed, the models in the PMML standard can be easily
defined [7]. Specifically, the current version of PFA contains
all of the analytic models in the current version of PMML
[7]. In addition, compositions of the analytic primitives can
be used so that any pre-processing or post-processing code
can be expressed in PFA.

PFA is a model interchange format based upon analytic
primitives. A developer or vendor can add support for a new
mathematical or statistical function, model, data transfor-
mation or data aggregation at any time simply by express-
ing it in the PFA language. The more common models can
be adapted as a standard by the PFA Working Group. This
approach makes adding new functionality to PFA-compliant
scoring engines relatively easy and reduces to work required
to develop PFA-compliant scoring engines.

To summarize, the main benefit provided by scoring en-
gines is that models can be quickly added to operational en-
vironments. With a PMML-compliant scoring engine, any
model that is specified in the standard can be quickly added
to operational environments. With PFA-compliant scoring
engines, any model that can be described in the PFA lan-
guage can be quickly added to operational environments.

4. OVERVIEW OF PFA
The Portable Format for Analytics (PFA) is a domain-

specific language that describes scoring engines. A scoring
engine is a high-throughput data processor, usually gener-
ated by a statistical analysis. For instance, an analysis might
describe a dataset using decision trees; its scoring engine is
an algorithm that walks down each tree, classifying data.
Another analysis might use k-means to summarize a dataset
as a code book of cluster centers; its scoring engine would
associate new data to their closest clusters. PFA provides a
uniform way to implement and transport these scoring en-
gines.

PFA is portable because it is a simple language whose
syntax is a strict subset of JSON. JSON is a widely-used se-
rialization format consisting of only four primitives (string,
number, boolean, and null) and two container types (ar-
ray and string-based map). PFA data transformations and
models are all implemented as a syntax tree of nested JSON
objects. Any program or library that can manipulate JSON
can manipulate PFA. Thus, one only needs to add JSON

output to existing data analysis software for it to generate
PFA-based scoring engines.

The smallest possible PFA document is:
{"input": "null", "output": "null", "action": null},
which inputs nothing, outputs nothing, and does nothing.
But, this presents the three necessary parts of a PFA En-
gine: an input, output, and action. Input and output define
the data into and out of the PFA engine. This can be a
type, like double or a schema defining a structure. The
action routine is called once for every input datum. The
action can be any PFA primitive or user-defined function.
For example, here is a trivial model

input: double

output: double

action:

- {m.round: {"*": [{m.sin:

{+: [input, 1]}}, 2]}}

This PFA engine takes a double as input, adds 1 to that,
multiples the sine of that addition by 2 and returns the clos-
est whole number as a double.

Simple engines, like the mathematical function above, trans-
form one input into one output. In practice, you sometimes
need to filter data (one input to zero or one outputs) or ag-
gregate data (an entire dataset to one output). To handle
these cases, PFA has three methods: map, emit, and fold,
which are described later in this section.

Also, PFA has a centralized concept of state that can be
shared among multiple instances of a scoring engine. These
scoring engines can be stopped, resumed, rolled back to a
previous state, or analyzed offline in ways that would be
impossible for arbitrary code written in a conventional lan-
guage. A PFA-based scoring engine is essentially a lightweight,
human-readable virtual machine capable only of transform-
ing data.

Persistent storage in PFA is handled by cells and pools.
Cells are global variables that cannot be created or destroyed
at run-time, only reassigned. Pools are collections of key-
value pairs that can be created and destroyed at run-time.
This is similar to environments in R. For a pool, the gran-
ularity of concurrent access is at the level of a single pool
item.

Cells and pools are both specified as JSON objects with
the same fields, but initialization is only required for cells.

Extensibility. With PMML, when a function not in the
specification is needed, people write a custom extension in
their PMML-application and submit to the PMML Work-
ing Group the new desired functionality as a Request for
Comments. This is a reasonable balancing of a developer’s
immediate needs and the community’s goal of moving from
one stable release of the specification to the next. The draw
back is that in the interim, the model is not valid PMML
and cannot be used in another PMML application.

To achieve PFA’s first goal of extensibility and to remove
this obstacle to vendor portability, PFA is made of up an-
alytic primitives. Its functions are designed as “building
blocks” and as with a general programming language, user-
defined functions can be written in PFA, that are themselves
valid PFA, and used across any PFA application.

For example, in the PFA time module, there is no func-
tion that returns the UTC offset when given a timestamp
and timezone. This functionality was requested by a client

and will be submitted to the PFA Working Group for con-
sideration, but in the mean time, we wrote the user-defined
function in Figure 2 that can run inside any PFA applica-
tion.

Post-processing. Extensibility can also be considered in
terms of pre- and post-processing. PFA has before and end

that allows for hooks to be written that are outside of the
scoring process. Sometimes, there is a need to post-process
the scored event or its score.

Within a PFA scoring engine, post-processing can be per-
formed by including logic in the PFA action. As a simple
example, consider the post-processing logic of only wanting:

1. To alert when at least three scores over some threshold
have been seen in a 1 minute time window; and

2. Not alert for a given entity more than once in a 24-hour
period.

This can be accomplished by defining a record and pool
as follows:

types:

record(Counter,

event_counter: int,

alert_counter: int,

first_timestamp: double,

last_alert_time: double);

pools:

window(type: Counter,

shared: true) = {};

and including calls to a check and update in the action,
rather than just emitting a score:

action:

window[id] to fcn(old: Counter -> Counter) {

if u.checConditionMet(old) {

// send alert and update counter

} else {

//update counter

new(Counter,

event_counter: 1,

alert_counter: old["alert_counter"] + 1,

first_timestamp: ts,

last_alert_time: old["last_alert_time"]);

}

Composing PFA functions. As mentioned above, an im-
portant goal of PFA is supporting the composition of any
PFA functions. This means that, unlike PMML where com-
positions are restricted to certain scopes and between certain
components, PFA primitives, functions, and user-defined
functions can be composed where ever it makes sense. For
example, if you have a decision tree defined by:

types:

record(TreeNode,

field: enum([x,y, z]),

operator: string,

value: double,

pass: union(TreeNode,string),

fail: union(TreeNode,string))

You can add a regression at each leaf node by defining the
regression and embedding it in the leaves:

types:

record(Regression,

const: double,

coeff: array(double));

record(TreeNode,

field: enum([x,y, z]),

operator: string,

value: double,

pass: union(TreeNode,Regression),

fail: union(TreeNode,Regression))

The models are composed, so the action becomes a 2-step
process. Instead of returning a label from the tree walk, the
leaf is now a regression that needs to be scored:

action:

var leaf = model.tree.simpleWalk(input, tree,

fcn(d: Datum, t: TreeNode -> boolean)

model.tree.simpleTest(d,t));

leaf

becomes:

action:

var leaf = model.tree.simpleWalk(input, tree,

fcn(d: Datum, t: TreeNode -> boolean)

model.tree.simpleTest(d,t));

var vector = new(array(double), input.x,

input.y, input.z);

model.reg.linear(vector, leaf)

For completeness, in the decision tree PFA, the regression
needs to be defined at each TreeNode:

{TreeNode:

{field: y,

operator: "<",

value: 2.2,

pass: {string: "pass-pass"},

fail: {string: "pass-fail"}}},

becomes, for example,

{TreeNode:

{field: y,

operator: "<",

value: 2.2,

pass: {Regression:

{const: 0.0,

coeff: [0.1,0.2, 0.3]}}}}

fail: {Regression:

{const: -1.0,

coeff: [0.1,-0.2, 0.0]}}}}

PFA outputs. PFA views data as a possibly infinite stream
of inputs, and produces a corresponding stream of outputs.
The author of a PFA document may define a begin method,
which is evaluated before seeing any data. This author must
define an action method, which is evaluated on every input,
and may define an end method, which is evaluated after all
the data, if any such time exists. PFA is a stream processor,
like the UNIX command awk.

Most scoring engines produce one output for every input,
like the map or lapply functor found in array processing
languages. Some scoring engines, however, filter the data,

fcns:

getUTCOffset = fcn(x: double, zone: string -> double) {

// get minuteOfDay in the time zone

var hourOfDay_zone = time.hourOfDay(x, zone);

var minuteOfHour_zone = time.minuteOfHour(x, zone);

var minuteOfDay_zone = hourOfDay_zone * 60 + minuteOfHour_zone;

// get minuteOfDay in UTC

var hourOfDay_UTC = time.hourOfDay(x, "");

var minuteOfHour_UTC = time.minuteOfHour(x, "");

var minuteOfDay_UTC = hourOfDay_UTC * 60 + minuteOfHour_UTC;

// difference modulo the number of minutes in a day

var minuteDiff = (minuteOfDay_zone - minuteOfDay_UTC) % (24 * 60);

// difference in hours

var hourDiff = minuteDiff / 60.0;

// cycled to a number in the range (-12, 12]

if (hourDiff > 12.0)

hourDiff - 24.0

else

hourDiff

}

Figure 2: A user defined PFA function to supplement the PFA time module.

producing zero or one outputs for each input, while others
expand tables, potentially producing more than one output
per input (such as Hadoop mappers). Still other scoring
engines reduce a data stream to a single value or structure,
such as reduce functors or GROUP BY in SQL. These cases
cover all three types of functions in SQL (transformers, table
generating functions, and aggregations).

PFA provides for the three cases with a top-level field
called method, which may be "map", "emit", or "fold". In
"map" mode, the action is an expression that evaluates to
the output. In "emit" mode, the action may call an emit

function zero or more times to produce outputs. In "fold"

mode, the action returns a partial aggregation for each in-
put and also updates a tally that can be used in later steps
of the aggregation. To reduce a dataset, one could ignore
all outputs except the last. The "fold" mode also requires
a merge method that combines partial aggregations from in-
dependent processors, allowing the aggregation to be scaled
out, and a zero value for starting the aggregation.

5. PFA LANGUAGE DETAILS
A PFA-based scoring engine is a JSON object with fields

for general information like model name, version, and meta-
data, and a single execution path of expressions to be applied
to the input data. These expressions consist of constants,
such as numbers, data field references, which are JSON
strings, and function calls, which are JSON objects with the
following structure: {"functionName": [arguments]}. Ba-
sic features of the langage are special forms with multiple
keys: {"if": predicate, "then": consequent}.

PFA is a statically typed language with immutable data
structures and restricted function objects. This strictness
makes it possible to analyze a scoring engine before it is
executed. For instance, a semantically valid PFA scoring

engine can never pass a string where a number is expected,
can never introduce long-range dependencies between data
structures, and can modify shared state without the possi-
bility of deadlock.

5.1 Static typing
The PFA type system is inherited from Avro, a serial-

ization format that imposes structure on JSON by requir-
ing explicitly typed number formats (integer, long, single-
precision, and double-precision floating point numbers), a
distinction between Unicode strings and raw byte arrays,
homogeneous arrays and maps, heterogeneous records, enu-
meration types, and tagged unions of any of the above. An
Avro type is specified as a JSON object, with schemae like
{"type": "array", "items": "int"} to specify an array of
integers, for instance.

Avro schemae are included within PFA as type declara-
tions. Input data, function parameters, and global state re-
quire explicit types, declared with Avro schemae, and PFA
infers the types of all other expressions and checks them
against the declared output types.

PFA can downcast types to allow, for instance, a vari-
able declared as a union of null and integer to be passed
to a function that expects an integer, but it always splits
the program flow into cases— one path is followed if the
variable is null and another is followed if it is an integer.
Therefore, PFA can use null to signify missing data without
ever encountering a null pointer exception at runtime.

Static typing also provides a performance boost: PFA can
be compiled into bytecode that does not need to check types
at runtime. Only the structure of the input data must be
checked; the rest is guaranteed.

model producer

product, service, operational environment, etc.

PFA document

modeling environment for
data scientists

data

output messages

PFA document

state information for
analytic models

data data data

model consumer
(scoring engine)

input messages

data

collection of data
from operational
systems can be
episodic

analytic operations

analytic modeling

deployment enviironment

Figure 3: Analytic model producers and analytic model consumers (scoring engines) exchanging a PFA model.

5.2 Immutable data
Immutable data structures can be replaced but not modi-

fied in-place. For instance, items in an immutable array can-
not be changed, but the whole array can be replaced with
one that has different elements. Immutable data structures
have several conceptual advantages: there is no distinction
between references and values, so two data structures cannot
be linked in such a way that modifications of one implicity
change the other, and data can be passed from one scoring
engine to another without needing to defensively copy it.

Immutability is particularly useful for sharing data among
many scoring engines running in parallel. PFA defines copy-
on-write semantics for modifications of shared engine state
that allows non-blocking, consistent reads of the shared data
while one of the scoring engines is processing a transaction
to replace it. Since there is no distinction between references
and values, PFA implementations can re-use parts of a data
structure among different versions of that structure to avoid
deep copying and increase both memory and computational
performance.

5.3 Function objects
The ability to define functions and pass them as objects

is an incredibly useful aspect of many high-level languages.
They allow for generic functional programming, such as trans-
forming one structure into another structure by applying a
function to each element (map) or summarizing a structure
by iteratively applying an aggregation function (reduce).
They also allow the programmer to specify the beginning

and ending of a transaction on shared data by wrapping it
in a function, perhaps closing over local variables.

However, if functions are freely passed as objects, then it
can become impossible to statically determine which func-
tions can be executed in a given context. This is particu-
larly problematic when functions are used as transactions on
shared data, since this can lead to deadlock— two scoring
engines might end up waiting for each other when attempt-
ing to process mutually dependent transactions. Therefore,
PFA does not allow unrestricted function objects, but only
enough functionality to achieve the benefits of functional
programming and shared data transactions without the dis-
advantages.

Functions can be expressed as inline arguments to functors
such as map and reduce, and they can be named as globally
accessible user-defined functions that are referenced in argu-
ments to functors. Shared data can be modified by passing
it a function that transforms the old value into a new value,
but these transactions are not allowed to modify any other
shared data.

Since function references can only appear in argument
lists, a PFA validator can exhaustively determine which func-
tions can ever be called from a function, thereby ensuring
that a transaction can never call anything that, through a
chain of other function calls, attempts another transaction.
These functions are allowed to read any thread-local vari-
ables (as closures) and read any shared global data because
PFA’s concurrency semantics allow reading without block-
ing.

With these restrictions, functions do not need to be im-

plemented as objects in compiled PFA, which allows for an-
other performance boost: all user-defined functions could be
implemented as inlined bytecode.

6. PFA FOR MODEL DEVELOPMENT
Unlike a conventional program, a scoring engine typically

implements a simple or well-known algorithm with a large
store of parameter data. For example, a random forest may
include megabytes or gigabytes of tree parameters, but the
scoring procedure simply walks down each tree and reports
the average or most common result. A PFA document wraps
up the algorithm and the parameter data into one JSON
object, which eliminates the bookkeeping involved in coor-
dinating programs with their parameters.

Usually, scoring engines are produced by other programs—
for instance, a library package in R derives a random forest
and creates a function that can be used in R to score new
data. The only problem is that this scoring engine cannot
be used outside of the R environment. However, by iterating
over the R function’s internal parameters, we can convert it
to JSON and insert that JSON into a PFA document.

Even though the algorithmic part of a PFA document
tends to be a short list of library function calls, it can be dif-
ficult to write an algorithm purely out of function calls. Pro-
grammers want to write x + y rather than {"+": ["x", "y"]}.
For this reason, there are several converters from conven-
tional programming languages such as Python and Javascript
into PFA, but the most fully featured is PrettyPFA, which
provides a C-like syntax for all PFA features. In PrettyPFA,
the random forest algorithm is

input:

record(Datum, inputPlaceholder: double)

output: Score

types:

enum([scorePlaceholder], Score);

record(TreeNode,

field: enum([inputPlaceholder]),

operator: string,

value: double,

pass: union(Score, TreeNode),

fail: union(Score, TreeNode))

cells:

// declare an empty forest, to be filled in by R

forest(type: array(TreeNode), shared: true) = []

action:

// apply a tree-scoring function to each tree

var scores = a.map(forest, u.score(x: input));

// output the majority vote

a.mode(scores)

fcns:

// tree-scoring composes simpleWalk and simpleTest

score = fcn(x: Datum, tree: TreeNode -> Score)

model.tree.simpleWalk(x, tree,

fcn(d: Datum, t: TreeNode -> boolean)

model.tree.simpleTest(d, t))

The input and output sections declare data fields and the
TreeNode type declares the structure of a tree. This scoring
engine has one globally shared quantity (a cell), the array
of trees that comprise the random forest. Its action on input
data consists of three function calls:

• a.map maps a user-defined tree-scoring function (u.score)
to each tree in the forest, producing an array of each
tree’s scores;

• a.mode computes the mode of this distribution (a ma-
jority vote).

The u.score function calls two library functions, simpleWalk
and simpleTest (fully qualified), which together describe
the global process of walking over the tree and the local pro-
cess of deciding how to step from node to node. Different
choices of library functions or even user-defined functions
can be used to augment this process.

Once written, the PrettyPFA is transformed into a JSON
object that is more easily manipulated by a script. The
above example translates into the PFA in Figure 6. In this
form, the forest produced by R can be inserted into the tree
by reassigning

pfa["cells"]["forest"]["init"] = myForest

and changing the inputPlaceholder and scorePlaceholder

field names. We have developed many tools for manipulating
JSON, including regular expression patterns that can map

{some: ([...]), thing: (# < 12)}

(a JSON object with keys "some" and "thing", the first
pointing to an array and the second to a number under 12)
into

{another: (1), thing: (2)}

(a new JSON object with keys "another", "thing" and the
same values). These patterns transform PFA structures any-
where in a PFA document, and are thus insensitive to mod-
ifications upstream.

7. PFA IMPLEMENTATIONS
We have implemented PFA in two environments: Python

and Scala (for the Java Virtual Machine). These two li-
braries implement version 0.8.1 of the PFA specification [7].
The two implementations agree as determined by the PFA
conformance tests that are available from the PFA Working
Group website [7].

The Python implementation, called Titus, is more often
used for model development, so it includes producers such as
regression, k-means clustering, and CART trees, converters
such as PMML trees to PFA, Python to PFA, and Pret-
tyPFA, and tools for manipulating structure, such as JSON
regular expressions and a command-line driven tool called
the PFA Inspector.

The Scala implementation, called Hadrian, is more often
used for model deployment, so it compiles PFA documents
into Java bytecode on-the-fly (without requiring disk access)
and is embedded in many systems. To date, Hadrian has
been embedded as a command-line tool that transforms data
from standard input to standard output (Hadrian-Standalone),
a scoring engine container that builds a directed acyclic

{"input": {"fields": [{"type": "double", "name": "inputPlaceholder"}], "type": "record", "name": "Datum"}, "output": {"symbols":
["scorePlaceholder"], "type": "enum", "name": "Score"}, "cells": {"forest": {"type": {"items": "TreeNode", "type": "array"}, "init": [],
"shared": true, "rollback": false}}, "action": [{"let": {"scores": {"a.map": [{"cell": "forest"}, {"fcn": "u.score", "fill": {"x":
"input"}}]}}}, {"a.mode": ["scores"]}], "fcns": {"score": {"params": [{"x": "Datum"}, {"tree": {"fields": [{"type": {"symbols":
["inputPlaceholder"], "type": "enum", "name": "Enum_1"}, "name": "field"}, {"type": "string", "name": "operator"}, {"type": "double",
"name": "value"}, {"type": ["Score", "TreeNode"], "name": "pass"}, {"type": ["Score", "TreeNode"], "name": "fail"}], "type": "record",
"name": "TreeNode"}}], "ret": "Score", "do": [{"model.tree.simpleWalk": ["x", "tree", {"params": [{"d": "Datum"}, {"t": "TreeNode"}],
"ret": "boolean", "do": [{"model.tree.simpleTest": ["d", "t"]}]}]}]}}}

Figure 4: The PFA for the random forest example.

topology of interacting scoring engines (Hadrian-Actors), a
servlet that can be used in Google App Engine or a generic
servlet container like Tomcat (Hadrian-GAE), and a map-
reduce processor that can score or train models in Hadoop
(Hadrian-MR). Any big-data tool that runs on the Java Vir-
tual Machine can be wired into Hadrian.

There is also a version for R, called Aurelius, that is a
toolkit for generating PFA in the R programming language.
It focuses on porting models to PFA from their R equiv-
alents. However, to validate or execute a execute scoring
engines, Aurelius sends them to Titus through rPython (a
3rd party library).

The choice of JSON model serialization allows for easy
integration into other big-data toolsets. For instance, the
MongoDB database system stores data as JSON-like ob-
jects and permits deep inspection of those objects. Titus
and Hadrian both have a snapshot feature that serializes the
state of a running scoring engine as a new PFA document
that could resume processing from the frozen state— Mon-
goDB could be used to store an ensemble of scoring engine
states and inspect their contents.

Similarly, the use of Avro as a type system smooths the
way to integration with big-data tools. Avro is a popu-
lar serialization format in the Hadoop ecosystem, so data
transfer to and from these tools is easiest with Avro and
possible for any format that can be mapped to Avro. For
instance, a CSV file or the tuples passed through a Storm
topology could be viewed as a series of flat, heterogeneous
Avro records, and the data structures manipulated by Hive
SQL are a perfect conceptual match to Avro’s nested data
types, even though their byte-serializations differ. With a
small transformation before and after the scoring engine call,
Hadrian could be inserted into a Storm topology or used to
write Hive user-defined functions.

Hadrian has been used in high-throughput environments
in which hundreds of thousands of records are processed per
second. In particular, Hadrian-Actors has been deployed on
a 32 CPU machine to perform cluster-based classification
and anomaly detection using 4 scoring engines (4 PFA files),
distributed as 32 instances, listening to 8 high-speed data
pipelines. Map-reduce jobs involving Hadrian-Hadoop and
Titus have been used to build models on a MapR cluster,
passing data as Avro and JSON.

8. CASE STUDIES

8.1 Case Study 1: Tracking Topical Interest
in Proteins Using Wikipedia

In the first case study, we describe a PFA topic tracking
model. This model tracked hourly page view statistics (De-
cember 2007 through August 2015) for all Wikipedia pages
in the category “Human Proteins.” There were 11,273 such

record(level: double,
 trend: double,
 cycle: array(double),
 multiplicative: boolean,

 firstIndex: int,
 index: int,

 numEvents: int,
 numRuns: int,
 currentRun: int,
 longestRun: int,

 counts: array(int),
 predictions: array(double),

 HoltWintersState)

Used by
updateHoltWintersPeriodic
to fit a custom curve to each
article’s time series.

Used to establish a burn-in
period to fit the model before
alerting.

Used by updateTrigger to
wait for 6 high deviations
before alerting and alert only
once per run.

Moving windows of recent
observations and predictions
to include in alerts.

Figure 5: The PFA record structure for the protein
topic tracking.

Wikipedia pages and we built a separate segmented PFA
model for each page. The purpose of this study was to iden-
tify changes in interest that might be related to scientific
discoveries. Part of the project was to detect changes rep-
resenting an increase of interest by scientists vs an increase
in interest from more general non-technical audiences, such
as occurs when the general press picks up a story.

Interest varies wildly from one page (one protein) to an-
other. Some protein’s pages were clearly only of interest to
practicing biologists, while others, such as insulin, are well-
known to the public. It was for this reason that we used a
separate model for each page, which we trained and scored
independently.

PFA segments models by placing them in arrays (for mod-
els we wish to iterate over, such as decision trees in a random
forest), key-value maps (for models that we want to look up
quickly, such as the example above), and “pools.” Pools act
like key-value maps, but have a concurrency granularity at
the level of individual key-value pairs, not the whole map.
This allows for high-speed training and scoring of submod-
els by a collection of cooperative scoring engines. For this
project, we put the page view models for each Wikipedia
page into a pool, and let PFA ensure that contributions from
different scoring engines would not conflict.

For the submodels, we noticed that page view trends have
a strong day-night effect, since the majority of viewers are on
one or two continents. For some pages, there is also a week-
long trend, since some pages would only be viewed during
the work week.

The record structure used by the models is shown in Fig-
ure 7.

We used PFA’s Holt-Winters model, also known as a triply
exponential moving average, to track the periodicity and
slow trends. Interesting events are defined to be cases where
this model is suddenly a poor predictor of page view behav-

record(title: string,
 year: int,
 month: int,
 day: int,
 hour: int,

 counts: array(int),
 predictions: array(double),

 chi2: double,
 ndof: int,

 Alert)

Title and date to correlate
with other sources.

Moving windows of
recent observations and
predictions.

Quality of pre-deviation fit
to discriminate against
alerts due to bad fits after
alerting.

Figure 6: The PFA record structure for alerts for
the protein topic tracking.

Figure 7: A visualization of the output of the PFA
for the segment associated with the titin protein.
The blue is the predicted number of page views of
the model, the red is the actual observed number
of page views. When the observed number of page
views differs signifcantly from the predicted view,
the model emits an alert.

iors, such as a burst of interest or interest at odd times of
day.

Dozens of outliers were discovered, some dramatic and
some subtle, and about half could be correlated with relevant
news events. The others are potentially interesting cases of
rumor or word-of-mouth news in the scientific community.

8.2 Case Study 2: Gaussian Process Model
One of the many models included in the PFA specification

is the Gaussian Process [8]. Its inclusion was originally moti-
vated by a request to the PFA Working Group by NIST, but
it is a generally useful model— or model component— and
therefore should be available as a global library function.

A Gaussian Process essentially smooths a (scalar or vec-
tor) function from a given set of sampled points. If these
sampled points are taken to be truth from a training phase,
the Gaussian Process is a supervised learning technique.
However, it could just as easily be a pre- or post-processing
step, approximating input data with a curve or reducing
noise in scored outputs from another model.

Gaussian Processes also provide a good example of the
separation of concerns between the mathematical abstrac-
tion presented to the data analyst and vendor-specific op-
timizations on the backend. The way that it is usually
presented, there is no clear separation between training a

Gaussian Process model and using it for predictions. Given
a training dataset, the Gaussian Process produces a non-
parametric fit without an agreed-upon specification for how
that PFA must ask for the original training data, not a fit in
some vendor-specific coordinates. The PFA gaussianProcess

function [7, model.reg.gaussianProcess] accepts training data
as an array of points and yields predictions.

However, an implementation that re-fits the training data
every time a prediction is requested would be very slow.
Therefore, Hadrian internally performs the fit once and at-
taches its non-parametric fit result to the training data array.
When the same training data are provided, the implemen-
tation first checks for a cached fit result. This fit result
never gets out of date because the training data array is
immutable.

A similar optimization is provided for k-nearest neighbor
models, which are also described by raw training data but
are more efficiently searched if the training data are re-cast
as a tree. These optimizations are toggled through the top-
level PFA field options.

The Gaussian Process Model provides a good example of
leveraging PFA’s ability to compose functions to define new
models. In the following code fragment, the math func-
tion m.kernel.rbf was developed for the Support Vector
Machine model, but can be reused to define the Gaussian
Process Model as follows:

model.reg.gaussianProcess:

- input

- {cell: table}

- null

- {fcn: m.kernel.rbf, fill: {gamma: 2.0}}

Any kernel function could be used here, including user de-
fined PFA functions. Also, the Gaussian Process Model can
be used in other PFA functions or in PFA pre- or post-
processing code.

8.3 Case Study 3: Supporting Diverse
Development Environments

In this case study, we describe a deployed instance of PFA
using the Hadrian scoring engine at a client site. The de-
scription is high level in order to protect the confidentiality
of the client and the project.

The client offered scoring as a service to its customers. A
team of data scientists developed models for customers using
a variety of different applications and libraries, including
R, Scikit-learn and Python. Hadrian was integrated once
into the scoring as a service application. PFA exporters
were used to export PFA models from the various tools and
applications used by the data science team.

Recall that Hadrian is a PFA application written in Scala.
For this reason, any J2EE stack to import it as a JAR de-
pendency. For this project, we exposed the scoring function
through the Hadrian container’s API. Operationally, PFA
model files are uploaded to a servlet container, compiled by
Hadrian into scoring engines, and exposed to the Java code
running in the scoring as a service application. The score
function takes an event as a map, validates it against the
schema, scores it, and returns the result. Multiple models
can be run, and the Java container can provide any pre- or
post-processing that is not part of the model. With this ap-
proach, a single web-application can be used to score all of
the models used by the client in production, independent of

what tool or application was used to develop the model and
what pre- or post-processing is required.

The exporters used for this project have two parts: the
first is written in the native language of the model (R, Python,
etc) and goes into the trained models, pulls out the values
required in the PFA version, and writes them as JSON while
the second takes a PFA template, the input and output
schema, and the extract model values as JSON and gen-
erates a valid PFA model. This second part is generally
written in Python.

After the model is exported, the native and PFA versions
are compared on a validation data set and when the model is
approved, it is saved with the date and performance metrics
so that it can be compared with future candidate models, as
part of Champion-Challenger methodology.

8.4 Case Study 4: Scoring over an Enterprise
Service Bus

In this case study, we describe a second deployed instance
of PFA using the Hadrian scoring engine at a client site. As
with the previous case study, the description is high level
in order to protect the confidentiality of the client and the
project.

In this deployment, MapReduce is used to process large
amounts of network data that have been stored in a Hadoop
cluster. An application called Hadrian-MR is used to pro-
cess the data using MapReduce and to produce PFA blocks.
These blocks may need to be assembled into a PFA model,
depending on the type of MapReduce job run and the statis-
tics calculated. In this way, data scientists can build models
over data in the Hadoop cluster and export models in PFA.

The operational systems use a real time distributed mes-
saging platform (an enterprise service bus) that processes
billions of messages per day. An application called Hadrian-
Actors interfaces to the message platform, listens for mes-
sages on the relevant topics, and scores the messages using
Hadrian. The output messages are then returned to the mes-
saging platform. In this way, PFA models developed by the
data scientists can be easily deployed simply by importing
them into the Hadrian-Actor application. The main bene-
fit of this architecture is the ease and speed in which new
models can be introduced into the operational environment,
even when the models require user defined PFA functions.

9. STATUS OF PFA AND HADRIAN
As of February, 2016, the DMG PFA Working Group has

approved version 0.8.1 of the standard. The current stan-
dard can be found on the DMG website (www.dmg.org).

To ensure compatibility of PFA implementations, a suite
of full-coverage tests were generated for each library func-
tion. Since many PFA functions are polymorphic, they are
each tested for a broad, representative set of compatible sig-
natures. Each of these signatures are tested for a broad, rep-
resentative set of values (including infinity, NaN, and every
possible runtime error). These tests were generated algo-
rithmically, using an XML description of the PFA standard.
In all, the tests comprise over 6000 scoring engines, evalu-
ated for more than 1 million sets of values. The JSON file
describing these tests is currently 238 MB in size. New PFA
implementations can check their compatibility and coverage
by evaluating these tests.

Hadrian is available from Github:

github.com/opendatagroup/hadrian,

with an open source license. The current version of Hadrian
is 0.8.4.

10. SUMMARY AND CONCLUSION
We have described the design of a new extensible language

for describing mathematical, statistical and machine learn-
ing models called the Portable Format for Analytics (PFA).
PFA supports the compositions of models, data transfor-
mations, data filtering, data aggregations, and user defined
functions, allowing very general user defined models to be
described in PFA, as well as the pre- and post-processing
required by most deployed models. This represents a signif-
icant advance over current standards for describing analytic
models. The Data Mining Group is developing the PFA
standard and the current version is 0.8.1 and contains over
400 functions. We have also discussed two implementations
of PFA conformant scoring engines, one in Scala and one in
Python. Finally, we have described four case studies of PFA
models that have been deployed using Hadrian.

11. REFERENCES
[1] Data Mining Group, “Predictive Model Markup

Language (PMML),” www.dmg.org.

[2] R. Grossman, S. Bailey, A. Ramu, B. Malhi,
P. Hallstrom, I. Pulleyn, and X. Qin, “The management
and mining of multiple predictive models using the
predictive modeling markup language,” Information and
Software Technology, vol. 41, no. 9, pp. 589–595, 1999.

[3] R. L. Grossman, M. Hornick, and G. Mayer, “Data
mining standards initiatives,” Communications of the
ACM, vol. 45, no. 8, pp. 59–61, 2002.

[4] A. Guazzelli, W.-C. Lin, and T. Jena, PMML in action:
unleashing the power of open standards for data mining
and predictive analytics. CreateSpace, 2012.

[5] T. White, Hadoop: The Definitive Guide, 4th Edition.
O’Reilly Media, Inc., 2015.

[6] S. T. Allen, M. Jankowski, and P. Pathirana, Storm
Applied: Strategies for real-time event processing.
Manning Publications Co., 2015.

[7] Data Mining Group, “Portable Format for Analytics
(PFA),” www.dmg.org.

[8] C. E. Rasmussen, “Gaussian processes for machine
learning,” 2006.

