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ABSTRACT

Online optimization is central to display advertising, where
we must sequentially allocate ad impressions to maximize
the total welfare among advertisers, while respecting various
advertiser-specified long-term constraints (e.g., total amount
of the ad’s budget that is consumed at the end of the cam-
paign). In this paper, we present the online dual decompo-
sition (ODD) framework for large-scale, online, distributed
ad allocation, which combines dual decomposition and on-
line convex optimization. ODD allows us to account for the
distributed and the online nature of the ad allocation prob-
lem and is extensible to a variety of ad allocation problems
arising in real-world display advertising systems. Moreover,
ODD does not require assumptions about auction dynamics,
stochastic or adversarial feedback, or any other characteris-
tics of the ad marketplace. We further provide guarantees
for the online solution as measured by bounds on cumula-
tive regret. The regret analysis accounts for the impact of
having to estimate constraints in an online setting before
they are observed and for the dependence on the smooth-
ness with which constraints and constraint violations are
generated. We provide an extensive set of results from a
large-scale production advertising system at Amazon to val-
idate the framework and compare its behavior to various ad
allocation algorithms.
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1. INTRODUCTION

The past few years have seen significant interest and re-
search in ad allocation in online display advertising, where
the problem consists of serving ad impressions to users from
many competing ads across a large number of websites and
mobile apps, subject to a variety of advertiser objectives and
constraints. For example, advertisers typically expect that
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an advertising platform will maximize ad performance (i.e.,
the ad’s effectiveness at driving user behavior), subject to
constraints on user targeting and constraints on ad delivery,
such that the advertising platform is expected to spend as
close to 100% of an ad’s budget as possible by the end of
the ad’s flight time under a cost-per-mille, or CPM, billing
model. In the literature on display advertising [3, 6, 17],
online ad allocation is typically formulated as an online op-
timal assignment problem over a bi-partite graph in which
nodes correspond to both ads and bid requests (i.e., user
visits to a web page). Bid requests are processed sequen-
tially, with edges corresponding to possible assignments of
an ad to a bid request with weight equal to the advertiser’s
welfare for the given ad/bid request pair. In practice, the
ad allocation problem is characterized by being 1) online,
and 2) distributed (i.e., variable updates must be executed
in parallel across large fleets of machines), with 3) poten-
tially multiple long-term constraints that require estimation
of quantities at bid request time (e.g., estimating the cost of
an ad impression before winning it on external exchanges).
Various algorithms have been proposed for the ad allo-
cation problem in the online display advertising literature
[3, 6, 9, 10], but these have largely been derived as either
approximation algorithms or heuristics, increasing the diffi-
culty and complexity in extending these methods to a variety
of constraints [17]. The distributed aspect of online display
advertising has not been explicitly addressed either, espe-
cially in the presence of long-term constraints, which leads to
further approximations in a production setting. Moreover,
algorithms proposed have not accounted for highly variable,
dynamic constraint violations (e.g., spend amounts) per ad
that are often encountered in practical online ad serving
systems. This is one reason why ad allocation solved as
an offline problem can often be sub-optimal in practice [6].
Finally, the impact of having to estimate constraints in or-
der to allocate ad impressions (e.g., in real-time bidding, or
RTB, exchanges, the clearing price of an ad auction is only
revealed to us after we’ve decided on which ad to show).
To the best of our knowledge, a comprehensive and holis-
tic framework that satisfactorily addresses the above chal-
lenges faced in practical web-scale algorithms is still missing.
In this paper, we present a general framework for deriving
online and distributed ad allocation algorithms for dealing
with a variety of online ad allocation problems in display ad-
vertising. Our contributions can be summarized as follows:

e We introduce a framework to derive online distributed
optimization algorithms applicable to online ad alloca-



tion problems with long-term advertiser-specified con-
straints;

e We account for the impact of having to estimate con-
straints before they are observed, without explicitly
assuming bandit feedback;

e Leveraging the theoretical analysis provided in [12], we
show that our approach enjoys bounds on dynamic cu-
mulative regret, which depend on the smoothness with
which constraint violations and the constraints them-
selves occur to the oracle learner over time.These re-
sults do not make assumptions about auction dynam-
ics, stochastic or adversarial feedback, or other char-
acteristics of the ad marketplace.

e We validate the framework by reporting results on traf-
fic data collected by a large-scale display advertisement
system at Amazon.

We call our framework online dual decomposition (ODD),
which allows us to efficiently solve general large-scale opti-
mization problems in a distributed and online fashion.

2. ONLINE DISPLAY ADVERTISING AS AN
OPTIMAL ASSIGNMENT PROBLEM

In online advertising, each user visit to a web page triggers
a bid request ¢ to be sent in real-time (through possibly com-
plex channels) to a host, or machine, in an ad serving fleet.
Each incoming bid request has a set of candidate ads that
can be served: the set of candidates that are eligible to be
shown for a bid request are determined by several advertiser-
specified constraints such as behavioral or demographic tar-
geting (i.e., an ad is to be/not to be shown only to users
satisfying targeting criteria), or frequency capping (i.e., an
ad is not to be shown more than some number of times to
a given unique user over some time period), to name a few.
Indexing bid requests by ¢, we denote by C; C {1,---, M}
the subset of M ads that are eligible to be shown for bid
request i as a result of such constraints. Indexing ads by
j =1,---, M, the welfare of serving an impression for ad
j (i.e., the value of showing the ad once to a user) for bid
request ¢ is given by v;; > 0. The welfare v;; can be set to
the expected value of serving one ad impression for ad j for
bid request i, but other expressions for welfare may be used
as well.

For bid request i, let assignment variable z;; = 1 corre-
spond to our decision to allocate ad j an impression, with
z;; = 0 otherwise. Let w; be the clearing price associated
with allocating an impression for bid request i (e.g., the
result of a second-price auction on external ad exchanges).
Similarly, let a;; be the some advertising quantity (e.g., bud-
get consumed) incurred a result of allocating an impression
for bid request i for ad j, where we generally assume that
advertisers are charged per impression (as opposed to, say,
a cost-per-click or cost-per-action model). We note at this
juncture that a;; and the clearing price w; can be distinct
in practice. In particular, the method by which a;; is com-
puted can vary from ad to ad and from one bid request to
the next, depending on contracts that advertisers may hold
with the ad serving system.

Given the welfare v;; of serving an impression of ad j for
bid request i, we wish to derive an online and distributed

algorithm for selecting ads j such that in aggregate, we max-
imize total welfare across all advertisers subject to long-term
constraints specified by the advertisers as a function of all
variables x;;. We will also have the constraints that for
any bid request 4, Zjeci z;; < 1, such that we can show
at most one ad per bid request (we can also elect to show
none). As we assume a distributed and online setting, bid
requests are divided across time and among several hosts.
Thus, there are two ways to partition bid requests: the first
is by time, whereby we can divide the continuous time axis
into rounds of T" approximately even-sized intervals indexed
by t = 1,---,T. For a given interval ¢, let I; denote the
set of bid requests processed across the entire fleet in that
interval, such that the sets I; form a partition of all bid re-
quests. Given the above, let x¢,u; denote assignment and
utility’ vectors whose elements correspond to x5, v;; —w; re-
spectively, and define matrices A; similarly. For illustration,
Figure 1 shows a toy example of an assignment problem with
scalar quantities and corresponding matrices and vectors as
defined above.

Rounds Constraints Assignments  Utilities Ads

________________________________________

V12 — Wy
V14 — W1
Vg — W
V23 — Wa |

Figure 1: A toy assignment problem consisting of
4 ads and 5 bid requests divided into 2 rounds,
with corresponding matrix and vector quantities
A, x¢,u;. Here, elements a;; correspond to some ad-
vertising output of interest (e.g., budget consumed)
for bid request i and ad j, with z;; € {0,1}. Dark
edges in the bipartite graph on the right correspond
to a possible feasible assignment. Figure best seen
in color.

As has been commonly done in online display advertising
[3, 6, 9], we formulate the canonical problem of allocating
ad impressions as an optimal assignment problem, where
the goal is to match ads to bid requests such that we maxi-
mize the total difference between welfare and clearing price
(profit) across all ads and all bid requests for the ad serv-
ing platform. The standard optimal assignment problem
can be written as a linear program (LP) relaxation of the
corresponding combinatorial optimization problem with as-
signment variables X = {z;;}:

maximize E (vij — w;)xs; with
X
4,5€C;

{\nyzjeci zij <1

Vi,j€ Cs x5 > 0.

We now introduce the online aspect of the problem (we
postpone discussion of the distributed aspects for later) by
partitioning bid requests into sets I; for t € {1,---,T}.

1Utility measures the advertiser’s preference between bid
requests.



Using matrix-vector notation and introducing the quantity
N = max; M|I;|, we can compactly re-write the optimal as-
i T T

signment problem as > i1 U X¢, where we

have defined

th{xG[O,l]N)ViEIt,injglandxij:Oifj¢Ci;
JEC;

Vid I, a; :0},

maximize
x1E€EXY, - , X EXT

and x; is a row in the matrix X € {0,1}T7*". In the online
assignment problem, for round ¢ the external world generates
the vector uy, after which we must make allocation decisions
x; and obtain reward u;r x¢. Thus, each element of vector
X¢ € A is an assignment variable x;;, with the elements of
vector u; similarly ordered to be equal to v;; — w;.

It has been shown [6] that we can solve the optimal assign-
ment problem iteratively for each bid request ¢ by sorting
ads j € C; by vsy, picking the top-ranking ad and assigning
an impression to that ad [6] if max; v;; > w;. For complete-
ness and due to its central role in what follows, we formalize
this result as a Lemma and reproduce the proof (which can
also be found in [6]) in the Appendix.

LEMMA 1. Denote by x; to be the set of all x;;°s that are
processed in round t. Let j* = argmax;cc, vij, and let B; be
a dual variable for enforcing the constraint Zjeci zi; < 1.
Then for each i € I, we must have

*
B; = vij*+ = maxv;;
i J Maxvis,

Ty = 1,855 =0Vj € Ci, 5 # 3" if B] > w,
:?Z'WIOV] if ,6: < wi,

N T
such that X; = argmaxx,cx, U Xt.

Thus, for a given round ¢, the above online algorithm se-
quentially allocates impressions such that the optimum x; €
argmaxx, e x, u/ x; is attained. In particular, the quantity
BF plays the role of the bid submitted to an auction for a
given ad impression opportunity within a larger advertising
marketplace. Consistent with the practical reality of ad al-
location, if 3; < w;, we do not allocate any ad impression
(i.e., we lost the auction) and otherwise we get to allocate
an ad impression to the winning ad j* € C;. Thus, the cal-
culation of %X; is wholly determined by computing bids 3}
and finding whether we win an ad impression or not via the
clearing price w; for bid requests i € I;.

In the sequel, we take advantage of the above result to
introduce concave functions of X for modelling long-term
constraints and solve the resulting non-linear maximization
problems via an online primal-dual method (with guarantees
on the resulting solution as compared to the optimal offline
solution), whilst preserving the computationally-efficient pri-
mal steps with some simple modifications. Under our pro-
posed framework, we will modify each bid as a function of
long-term constraints to 87 = max;{vi; — Aj+as:;} such that
X; = argmaxx,cx, {uf x; — X' Ayx;} for some dual vari-
ables A (formally defined in the sequel) that allow us to
penalize violations of constraints. Our framework has the
property that no knowledge of auction dynamics, assump-
tions about stochastic or adversarial feedback, or knowledge
of other characteristics of the ad marketplace are needed to
provide regret guarantees for online ad allocation. Moreover,

as we will show, the resulting algorithm can be naturally ex-
tended to a distributed setting in which we must allocate ad
impressions across a large number of ad serving hosts oper-
ating independently, which is key for practical large-scale ad
serving systems.

3. OPTIMAL ASSIGNMENT WITH LONG-
TERM CONSTRAINTS

As we will show, many online optimization problems of in-
terest in online display advertising will consist of an optimal
assignment problem with additional equality and inequality
constraints on the primal variables x, which introduces non-
trivial challenges. We assume that these constraints are 1)
measured over T rounds, and 2) are linear in the assignment
variables X, such that we can account for such constraints
by penalizing some measure of % Zthl A:x; — by, where
A, € ACRE*YN b, ¢ R, Building on the work from [12],
the optimal assignment problem can be modified to:

T T
o 1 T 1
= -&| = Aix; —b 1
o S T D e (TZH . ) W

where £ is a convex function measuring the residuals of the
constraints. In this paper, we will assume that £ is smooth
in the sense that it has Lipschitz continuous gradients over
the domain R¥. We note that although the above optimiza-
tion problem is not linear in all variables in the strict sense
of the optimal assignment problem, the corresponding La-
grangian (and primal-dual algorithm that we will derive) re-
mains linear with respect to assignment variables X, which
implies that the computationally efficient ranking scheme
derived for the optimal assignment problem can be modi-
fied to solve for the primal variables in the above problem.
Moreover, we note that unlike [2], we are not interested in
the (unweighted) average of x; vectors insofar as objectives
and constraints are concerned, and we are explicitly inter-
ested in maximizing functions of x; that are time-varying
and highly dynamic. Before we continue, we illustrate two
common problem classes that arise frequently in online dis-
play advertising that can be naturally formulated as opti-
mization problems of the above form.

EXAMPLE 1. (Max-performance, target delivery ad allo-
cation) In this problem formulation, we wish to mazimize ad
performance (as measured by welfare vi; for each bid request
and eligible ad candidate) subject to the need to consume as
close to 100% of each ad’s total budget for T rounds. De-
noting 1) a;; to be the revenue charged to the advertiser for
ad j upon serving an impression for ad j and bid request
i and 2) b; to be ad j’s total budget to be delivered over
T rounds, we have K = M (one constraint per ad for M
ads), Ay € RM*N s a matriz whose (§,1)"" element is a;;
and b, € RM is a vector whose jth element is b;, so that
% Z?:l A.x; — by is the average error between the amount
of budget consumed and the target amount of budget to be
consumed over T rounds, which we wish to penalize via a
suitable choice of .

EXAMPLE 2. (Max-delivery, maz cost-per-action ad allo-
cation) Here, we aim to mazimize welfare subject to a con-
straint on the cost-per-action (CPA) for each ad, specified
as c¢; > 0. With K = M, let pi; be the probability of user
conversion, and let r;; be the amount of revenue charged to



the advertiser upon serving an ad impression for bid request
i and ad j. Given the quantities defined in FExample 1, we
can formulate the CPA constraint for ad j as

Vi, Y riwi < ¢y pimis.
7 7

This can be formulated equivalently as % 23:1 Aix; — by
where Ay is a matriz whose (§,1)'" element is (ri; — ¢;pij)
and by = 0 so that penalizing values of % 23:1 Aix: — by
above 0 is equivalent to a penalty for violating the CPA con-
straint for each ad.

A list of possible instantiations for £ for the above prob-
lems can be found in [12]. We highlight that in the general
case, we allow K # M, which allows us to account for mul-
tiple constraints per ad, and/or diverse sets of constraints
for different ads.

Consider now the Lagrangian, or saddle-point function,
for the problem in (1), given by

T T
1 1 «
c(x,x):TE ulx - AT [T§ Axi—b | +E5(N), (2)
t=1

t=1

where A € A are dual variables that belong to the domain
A CR¥ of £*, where £*(A) = sup,cpx {2z — £(z)} is the
Fenchel conjugate [4] of £ for which we assume the domain
is compact so that there exists Ry = maxaea | Al|2 < +oo.
Moreover, we remark that £* is strongly convex by virtue
of £ having Lipschitz continuous gradients [14]. We recall
that a function £* is strongly convex with modulus o > 0 if
E(u) <& (V)+VE () (u—v)—|lu—v|? for any u,v €
RE. We can rewrite the Lagrangian function described in
(2) as L(X,A) = % 37, Le(xt, A), where

uf %, f)\T(Atxt - bt) LE N fAEA

—00 otherwise.

Et(xt, )\) = {

To maximize Li(xt, At) with respect to x¢, it is straight-
forward to show that the result of Lemma 1 can be mod-
ified to accomplish this by ranking ads for each bid re-
quest, but using a modified bid of v;; — Ajta;;. Thus, in
the sequel we will appeal to Lemma 1 for a computation-
ally efficient method for solving the problem of computing
X¢ € argmaxx, cx; Lt(Xe, A).

In an offline setting where we would have the ability to
iteratively update both primal variables x;,t =1,--- ;7T and
dual variables X, the following canonical? primal-dual algo-
rithm would allow us to solve for optimal variables x;, A*
by repeating the two steps below until some convergence
criterion is met:

e (P-offline) Compute for allt =1,---,T

X € argxrilea)}é Li(x¢, A).

e (D-offline) Given %; for all ¢ = 1,--- T, compute
Li(%¢,A) and gradient VAL(X, ) = 32, VaLe(ke, ).
Update all dual variables A using a projected gradi-
ent descent method with step size . Note that we
speak about a project gradient scheme (as opposed to

2There are in fact several primal-dual algorithms that could be
used to solve the offline problem; we present a simple method to
best illustrate the online method that follows.

a projected subgradient method) since the choice of £
we will make in the experiments leads us to consider
a function £ which is not only strongly convex, but
also differentiable on its domain A.

The above algorithm is an offline algorithm that iteratively
updates primal and dual variables until convergence. How-
ever, in practice, ad allocation requires us to make deci-
sions in online, or sequential, fashion, such that the pri-
mal and dual steps above must be interleaved over rounds
t=1,---,7T. We now turn to formulating the ad allocation
problem as an online convex optimization problem in which
we sequentially update primal and dual variables X; and A;
at each round.

4. OPTIMAL AD ALLOCATION AS ONLINE
CONVEX OPTIMIZATION

To move to an online convex optimization formulation, we
must also account for the fact that in an online setting, not
only must we update primal and dual variables sequentially,
but also the constraint matrices A; are only observed after
we allocate ad impressions for round ¢ (a practical example
of this is that we often only find out how much to charge
the advertiser once we have won an external RTB auction
for a given winning ad). This requires us to estimate such
matrices via A in order to produce primal variable updates.
To this end, we introduce

ﬁt(xt, )\) = u;rxt — AT(AtXt — bt) + 6*()\)

as the Lagrangian function for round ¢ using the estimate
A, such that £, (x¢, A) = Li(xe, A) — AT (At — A¢)x¢. Then,
an online version of the primal-dual method for each round
t=1,---,T can be described as:

e (P-online) Compute X; € argmaxsy, cx, Li(Xt, Ar).

e (D-online) From %:, compute L¢(X¢, j\t) Given gradi-
ents Vﬁt(f(t,j\t), update dual variables 5\t+1 using a
projected online gradient descent method as

Xt+1 = HA [Xt — 77tV£t(§(t, Xt)] with step size Nt

e (A-online) Given Ay, A, update At+1 via a projected
online subgradient method with step size v;.

In the above online optimization problem, we require esti-
mating constraint matrices for each round via A: before we
provide primal variable estimates X¢. This implies that X
is obtained from a perturbation of L¢(x¢, A¢) via [Zt(xt, At),
with A observed only after we have made the ad assignment
X¢.

Estimating A;: To estimate constraint matrices A; on-
line, we assume that in addition to the dual variables being
bounded in ¢ norm with radius Ry, we also have ||x¢||2 < Rx
for all t,x; € X;. Similarly, let R4 be such that [|A||lr < Ra
for all A € A and A is convex. We further assume that we
perform an online projected subgradient method on matri-
ces At to estimate the sequence Ai,..., Ar where Az+1 =
HA[At — 1:G¢], with G; a subgradient of A — [|[A; — Al|r
at A;. With the step size vy = RA/\/Z, it can be shown [12]
that for any sequence {A;}i—;, the overall cumulative regret
bound for the estimation of x;’s is additively impacted by



the term
O Ry {XT: |A: — Asyi|lr + Ral,
VT LS
where || - || » stands for the Frobenius norm. This contribu-

tion captures the variations in the constraints A; themselves
from one round ¢ to the next, plus a function of the largest
constraint matrix (as measured by R4) observed over the
course of the algorithm. With the above result and having
described our online algorithm, we are now ready to present
cumulative regret bounds for the above algorithm as mea-
sured by the difference in the primal objectives for the or-
acle solution and the online solution obtain from the above
online algorithm, where both solutions account for adver-
tiser objectives and long-term constraints. That is, we will
compare the performance of the online algorithm to that of
an oracle algorithm which has complete knowledge of past
and future, plus the ability to modify optimization variables
in the past, so as to provide primal variables of the form
X; € argmaxxex; L£¢(x, X*) for each round t given the of-
fline dual optimal variables A*. We expect at the outset
that the above algorithm should achieve performance which
is a function of the oracle algorithm’s performance plus fac-
tors that depend on the number of rounds 7', as well as
variability of constraints as measured by the oracle’s ability
to satisfy constraints. We present the bound in Theorem 1,
and direct the details of the proof (as well as key technical
Lemmas) to [12]. We note that the version of the theorem
which we state is for instance valid for the choice of £ we
make in the experimental section.

THEOREM 1. Let {x}}i—, be the offline primal optimal
assignment variables, and consider the sequence {&t}zzl gen-
erated by our online algorithm. Let ef = A:x; — b be the
corresponding optimal constraint residuals. We denote by

T
* * * 1 « 1 N
f Ef(xl,"'vxT)E?tzzlu;rxt_5(f¥Atxt_bt)

the optimal primal objective value obtained for the assign-
ments {x;}i—1, and define f = f(X1,---,%r) similarly.
Provided that maxi=1,... Tx;ecx; xeA ||[VaLle(xe, A2 < G for
G > 0, the projected online gradient descent/subgradients
updates for X and A, with step sizes iy = L/t, vy = RA/\/Z
imply

T
* 7 GL T —t . t N
J7of s (U log(D) - max |3 “el = X e
j=1 j=t+1
G’L 6RAR. [w
Mg
# G (g S [ S IA — vl + R

where € has Lipschitz gradients with modulus L.

Theorem 1 establishes that the projected online gradient
descent updates for dual variables A, along with projected
online subgradient updates for constraint matrices A, yield
an overall cumulative regret bound that decomposes into
three terms. The first term measures the smoothness, or
regularity, of the sequences {e; }7_; (as measured by the or-
acle’s ability to minimize constraint violations) as well as
{u;}{2; (which have a direct influence on x;). We can ob-
serve that if the residual vectors are constant e; = e* for

all ¢, the first term vanishes.® The second term captures the
contribution of having to perform online updates, which is is
sub-linear in the number of rounds T given previous results
in the online convex optimization literature [11, 19]). The
third and last term captures the contribution to the regret
due to the variation in constraint matrices A; as measured
by 3o [| A = Avsa|lr.

We note that Theorem 1 does not require any assump-
tions about the arrival order of bid requests, stationarity, or
about the precise mechanisms under which feedback is gen-
erated (e.g., specific auction dynamics, marketplace charac-
teristics, etc). Thus, Theorem 1 holds for any sequences of
{A;, b}, {u;}_, including those generated by an ad-
versary, with the consequence that if the adversary is suf-
ficiently powerful such that {A:x; — bt}tT:h {ut}z;l vary
wildly (i.e., even the oracle algorithm is unable to obtain
a smooth sequence {A;x; — b;}{_;), then the worst-case
bound on regret for our proposed online primal-dual method
can be large. Conversely, if the oracle algorithm is able to
achieve a regular-enough sequence {A;x; —b;}i_1, then our
proposed online primal-dual method is able to achieve the
same performance plus a factor that is sublinear in the num-
ber of rounds.

S. DISTRIBUTED ASPECTS OF ONLINE AD
ALLOCATION

Having presented regret bounds for our proposed online
algorithm, we now address the distributed aspects of ad al-
location, which are a fundamental to the display advertising
setting in practice. We note that for the allocation problem,
we can write u; x; = Zthl u/,xpe so that the primal step of
computing X; € argmaxx, ex; Lt(Xt, 5\t) can be decomposed
across multiple hosts, each processing disjoint subsets of bid
requests for round ¢ by ranking candidate ads for each bid
request to be processed on that host. We first present an
offline distributed algorithm that leverages this decompos-
ability, which we will quickly incorporate into an online and
distributed algorithm.

5.1 Offline dual decomposition

If we temporarily ignore the online aspect of the ad allo-
cation problem, a technique that would allow us to perform
distributed optimization is to decompose the ad allocation
problem across hosts for a given set of dual variables, collect
primal solutions and then update the dual variables. We
note that for any round ¢, we can partition the primal vari-
ables x; across hosts into disjoint sub-vectors of variables
such that x¢ = [X1¢, -+, Xm¢], where xp, is the vector of pri-
mal variables associated with host h = 1,--- , H. Further-
more, by defining partitions I}, of bid requests across hosts
h=1,---,H, we can perform similar partitions for u;, A,
X, (so that xp; € Xy;). With these partitions defined, the
Lagrangian £;(x, ) can then be decomposed as

Lo(xe,A) = uf xi — AT (Atxt - bt> +EN
H

= Z u;txht ~ AT Apxne + A by + EF (A)

h=1

= Zth(Xht,A) + Gt(A)’

h=1

3We refer the reader to [12] for an in-depth discussion.



which is a sum over functions of xp; with no overlap in
primal variable arguments, plus a function of A that is oth-
erwise independent of variables xp;. This implies that we
can parallelize the primal step of estimating the allocation
X € arg maxx,cx, L£+(Xx¢,A) across a number of hosts for a
given A, collect the solutions Xp; and then update A. The
resulting distributed primal-dual algorithm is then

e (P-offline & distributed) Compute for each round ¢t =
1,---,7T and for all hosts h=1,--- , H:

Xnt € arg max  Fpe(Xne, ),

Xpt €EXnpt
e (D-offline) Collect solutions to form X; = [X1¢, " , Xrt]
for all t = 1,--- ,T. From %X, compute L(%X¢, A) and

gradient VL(X,A) = > VLi(%¢, X). Given the gradi-
ent, update dual variables A using a projected gradient
descent method with step size 7.

The proposed algorithm consists of iteratively 1) perform-
ing a distributed Lagrangian maximization across all hosts
to obtain maxx £(x, ), followed by 2) a gradient descent
method. This technique for solving large-scale convex opti-
mization problems in a distributed setting consists of dual
decomposition [7, 8, 13], which yields primal and dual-optimal
x*, A* for a large enough number of iterations. However, in
the online advertising setting, we do not have the ability to
revise past ad allocations, nor can we realistically anticipate
(and hence make allocation decisions for) future bid request
opportunities. To address this whilst retaining the ability to
decompose the problem across a large number of ad serving
hosts, we next present online dual decomposition (ODD), an
extension of the dual decomposition technique to the online
optimization setting.

5.2 Online dual decomposition (ODD)

Consider now the following distributed and online algo-
rithm for each round t =1,--- ,T:

e (P-online & distributed) Define
th(Xht, >\) = uZtXht - ATAhtXhz-
Compute for all hosts h=1,--- , H:

)A(ht = arg max th(xht,At)-
Xpt €EXpt

e (D-online) Collect solutions to form X¢ = [X1¢, - - - , Xa¢].

From %; and given A;, compute L¢(X¢, 5\,5) and gradi-
ent VL (Xy, Xt), and update dual variables A;41 using
a projected gradient descent method with step size 7.

e (A-online) Given Aq, A, update A, via a projected
online subgradient method with step size v;.

The above distributed primal step, combined with the on-
line projected gradient descent for X¢ and subgradients for
A together form online dual decomposition (ODD), which
extends classical dual decomposition to an online setting in
which we must make ad allocations and update dual vari-
ables in an online fashion whilst having to use estimates of
constraint matrices At. In ODD, in each round ¢ we 1) solve
for allocations X+ that maximize th(xht,jxt) (distributed
Lagrangian maximization with estimates of constraints A.),
followed by 2) updates of the dual variables ¢ via an online
dual gradient descent method on L¢(X¢, )A\t) and 3) online up-
dates on At+1. We note that the above algorithm naturally

leverages the embarassingly parallel and computationally-
efficient ranking algorithm resulting from Lemma 1 for the
primal step, and otherwise enjoys the same regret bound
as presented in Theorem 1. The only additional assump-
tion we’ve made for ODD is that there exists a centralized
system for aggregating ad allocations, i.e., budget spend per
round and per host given by >, A, A ixp and constraint
matrices Aj; across hosts at the end of each round. From
those pieces of information, global constraint violations can
be computed for each ad (given centralized knowledge of
b; for each round) and updates for dual variables can be
computed and then propagated back to each host in the ad
serving fleet. Such systems are generally used in the online
display advertising platforms to track budget spend: we do
not discuss details on systems architectures that could be
used for this purpose.

6. RESULTS

To validate our proposed online distributed ad allocation
algorithm, we conducted three series of experiments with
the aim to empirically compare the performance and deliv-
ery characteristics of ODD with those of other online algo-
rithms. We focus on the application of max-performance,
target delivery ad allocation described in Example 1, for
which we consider two key metrics: 1) performance as mea-
sured by return on ad spend (ROAS), or the ratio of ad-
attributed sales to ad spend, and 2) delivery, as measured
by the fraction of an ad’s budget that was successfully con-
sumed relative to the fraction of the ad’s flight time that has
elapsed. More specifically, the goal in this class of problems
is to maximize the ad’s performance whilst consuming as
close as 100% of the ad’s budget by the end of its run time.
We chose £(z) to be the Huber function (see the detailed
discussion in [12]) for some non-negative parameters R, L:

L ligl2
S(Z) — 2 H ||2 R2
Rlz|2 — 5%
This choice yields the strongly convex dual function £*(A) =
T, (A) + 52 IAl3, where T, is the indicator on the f2 ball

such that [|[A¢]|2 < R for all rounds.

if |lzll2 < 7,

otherwise.

6.1 Experiment A: Simulation of ad allocation

In this experiment, we simulated ad allocation for a sam-
ple of 36 ads configured with a variety of budgets, delivery
profiles (i.e., the fraction of budget to be delivered in a given
time period) and targeting constraints encountered in our ad
serving system, where ad impressions were allocated over a
period of 24 hours with over 100MM bid request opportu-
nities. To compare the performance and delivery charac-
teristics of ODD, we examined 1) the proportional control
heuristic of [6, 15] and 2) the pdAvg approximation algo-
rithm from [10]. The proportional control heuristic consists
of modifying the welfare term w;; for each ad by subtract-
ing a term that is proportional to the error in delivery in
a given round (the difference between expected budget to
be consumed in a round and actual amount delivered). The
pdAvg approximation algorithm consists of modifying the
welfare in similar fashion, but as a function of average wel-
fare gained from allocating impressions for a given ad so far.
All algorithmic parameters for the above algorithms were
chosen from a discrete set in order to minimize total under-
and over-delivery.
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Figure 2: Performance for each of the 36 ads in Experiment A, as measured by return on ad spend (ROAS)
obtained by ODD (blue), the proportional control heuristic (green) and the pdAvg algorithm of [10] (red).
Subplots are numbered by ad to ease comparison between Figures 2 and 3. Figure best seen in color.
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Figure 3: Percent budget delivered as a function of expected percentage of budget onsumed over a period
of 24 hours for the 36 ads for ODD (blue), the proportional control heuristic (green circles) and the pdAvg
algorithm of [10] (red) for Experiment A. The black dotted line denotes the delivery pr oﬁle matching exactly
with the expected delivery profile for a given ad. Subplots are numbered by ad to ease comparison between
Figures 2 and 3. Figure best seen in color.



Figure 2 shows the performance (ROAS) metrics at the
end of the flight time for each of the three algorithms. Fig-
ure 3 shows delivery profiles for each one of them as a func-
tion of the expected delivery. As can be seen, pdAvg is able
to achieve improved performance over ODD (for 16/36 ads),
but at the cost of under-delivery in such cases (e.g., see
ads 2, 5 and 30). This is undesirable from the advertiser’s
perspective, as under-delivery limits the overall impact of
an ad and does not fully utilize the ad’s budget to achieve
the advertiser’s performance goals. Conversely, for cases
where pdAvg over-delivered (i.e., spent more budget ahead
of schedule), such as for ads 25 and 31, the performance ob-
tained was lower than that achieved by ODD. In aggregate,
the performance metrics obtained for the ODD and pdAvg
algorithms were very similar (within 3% of one another),
but pdAvg demonstrated the highest variability in delivery
(consistent with observations in [3]) in the form of over- or
under-delivery (standard deviation in percent budget con-
sumed across the 36 ads was 0.16% for ODD, 11.11% for
proportional control, 34.2% for pdAvg) By comparison, the
proportional control heuristic was only able to outperform
the ODD technique for 4/36 ads (in all four cases, it under-
delivered relative to the expected delivery profile), whilst
yielding larger violations of delivery goals across the 36 ads
as compared to ODD, but less variability in delivery as com-
pared to pdAvg. Overall, ODD yielded a smoother delivery
profile for all 36 ads with significantly less over- or under-
delivery as compared to the other algorithms, and with per-
formance (reward) equal to that achieved by the best of the
algorithms studied.

6.2 Live experiments in a distributed produc-
tion system at Amazon

The next two experiments were conducted within the dis-
tributed ad serving system at Amazon, where we compare
the performance and delivery characteristics of ODD relative
to a variant of the pdAvg algorithm.

6.2.1 Experiment B: Online A/B test at medium-scale

For the second experiment, we ran online tests of the
ODD framework in a live production environment at Ama-
zon where we compare our distributed optimization algo-
rithm (treatment) to an ad allocation algorithm derived
from pdAvg (control). Figure 4 shows results from an on-
line test consisting of 7 pairs of control and treatment ads
with a variety of slot positions, slot sizes and use/non-use of
targeting, with the ad line items in treatment and control
set to be otherwise identical. For this test, the exposure to
external and non-stationary ad marketplace dynamics over
the duration of the experiment (14 days) can lead to under-
and over-delivery (where in practice, advertisers are less sen-
sitive to over-delivery than under-delivery). As can be seen,
the use of ODD achieves positive performance lifts, with
delivery close to the target of 100% delivery for each ad.

6.2.2 Experiment C: Online A/B test at large-scale

Figures 5 and 6 show the results for the last experiment,
where we compare our distributed optimization algorithm
(treatment) to an ad allocation algorithm derived from pdAvg
(control). It is conducted with a larger-scale test (>25X the
number of ads from Experiment B) than the previous exper-
iment (leveraging a variety of slot positions, slot sizes and
use/non-use of targeting) for a larger set of ads across 8 ad-

vertiser pools over a period of 21 days: we see a consistent
and significant reduction in both over- and under-delivery
for all ads in the treatment set. We also note an overall
significant decrease (i.e., 39%) in the number of ads in the
treatment group that under-delivered as compared to the
control group, and a 22% decrease in the number of ads in
the treatment group that over-delivered as compared to the
control group, where under- and over-delivery were defined
by each advertiser. We also observe an overall 9% decrease
in the number of ads that under-perform and a 19% increase
in the number of ads that achieve advertiser-specified per-
formance targets (also defined by the advertiser). Last but
not least, we observed overall performance lifts in the range
of 10% to 193%: these results, taken cumulatively, demon-
strate that our algorithm is able to achieve higher advertiser
performance whilst being able to better enforce ad delivery
constraints as compared to the control treatment.

7. DISCUSSION

In this paper we have presented online dual decomposi-
tions as a technique for deriving practical online and dis-
tributed ad allocation algorithms for a variety of problems
in online display advertising. In addition to having pro-
vided several empirical results derived from online adver-
tising data, we have provided a theoretical analysis of the
dynamic regret incurred by ODD, which includes a depen-
dence on 1) the ability of an oracle algorithm to smoothly de-
liver ad impressions and 2) the smoothness with which con-
straints and constraint violations occur. While our analysis
provides a regret bound that otherwise scales sub-linearly
with the number of rounds 7', there remain several factors
that arise in practice that can impact performance and de-
livery in a production setting outside of the allocation al-
gorithm: examples of these include 1) changes in auction
dynamics, 2) changes, misallocations of ad budgets and 3)
mis-specification of other campaign-specific parameters, to
name a few. The impact of such changes on delivery and
performance in practice is not to be discounted (and such
impacts captured by our analysis in impacting the ability of
an oracle algorithm to achieve smooth delivery) and should
be studied as part of future work.

In this paper we have provided regret analysis that does
not require making any assumptions about how feedback
is generated by the external ad marketplace (e.g., auction
dynamics, stochastic versus adversarial pricing). While this
provides a robust baseline for performance and delivery char-
acteristics that can be expected from ODD in a practical set-
ting, this does not preclude the use of stable domain knowl-
edge and/or assumptions about the ad marketplace (e.g.,
forecasting data) that could be useful in practice in improv-
ing performance and delivery properties for ODD. We also
did not analyze the impact of delays and delayed feedback on
the algorithm: we conjecture that adaptive gradient meth-
ods [1, 16] for dealing with delays may be appropriate for
this setting, which we leave for future work. In terms of
dealing with incomplete feedback, we leave as future work
an investigation into extensions of ODD into the bandits
setting [5]. Last but not least, we did not examine different
distributed systems architectures and their impact on both
empirical performance and delivery of our framework, which
would be fruitful directions for future investigation.
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Figure 4: (a) Performance lift for treatment ads and (b) change in delivery for treatment ads using ODD
relative to control ads as a result of ad allocation via ODD in Experiment B. For this test, the exposure to
external and non-stationary ad marketplace dynamics over the duration of the experiment (14 days) can lead
to under- and over-delivery (in practice, advertisers are less sensitive to over-delivery than under-delivery).
Here, the use of ODD achieves positive performance lifts, with delivery close to the target of 100% delivery
for each ad. Figure best seen in color.
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Figure 5: (a) Performance and (b) delivery characteristics obtained from ODD relative to control ads for
Experiment C. For this test, the exposure to external and non-stationary ad marketplace dynamics over the
duration of the experiment (21 days) can lead to under- and over-delivery (where in practice, advertisers
are less sensitive to over-delivery than under-delivery). Here we see overall performance lifts in the range of
10% to 193% and a consistent and significant reduction in both over- and under-delivery for all ads in the
treatment set. Figure best seen in color.

100.00% 80.00%

70.00%
2 80.00% v
S T 60.00%
5 i
o 60.00% CIQJ 50.00%
g 2 40.00%
g 4000% $ 30.00%
e I
e il Bk L RN I
10.00% I I I
0.00% N ll 0.00% | n I I nEn -
A B C D E F G H A B C D E F G H
Advertiser pool Advertiser pool
B %ads under-performing - Control M %ads under-performing - Treatment W% ads under-delivering - Control W% ads under-delivering - Treatment
B %ads performing - Control B %ads performing - Treatment W% ads over-delivering - Control W% ads over-delivering - Treatment
(a) (b)

Figure 6: (a) Lift in performance and (b) change in delivery relative to control ads as a result of ad allocation
via ODD for Experiment C. For this test, the exposure to external and non-stationary ad marketplace
dynamics over the duration of the experiment (21 days) can lead to under- and over-delivery (in practice,
advertisers are less sensitive to over-delivery than under-delivery). Here we see decreases in the fraction of
ads that under-perform and/or under-deliver, as well as an increase in the fraction of ads that perform or
deliver up to advertiser-specified expectations. Figure best seen in color.
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Appendix

ProoF (LEMMA 1). Note that maximizing u, x; with re-
spect to x; € X is itself an LP, which can be written as:

maximize E (vij — ws)xsj
xX
¢ i€ly,jeC;
subject to Vi € Iy, E zi; <1
JEC;

Viel,jeCi, xij >0.
The dual of the above LP is given by

minignize Zﬂl
i€l

subject to Vi€ Iy, j € Cy, Bi > vij,
ViEIz,ﬂi 2 Wi,

with dual optimum @*. Trivially, for a given ¢, if 3] > w;, we
must have 3 = Max vij = Vij+ (otherwise 87 would violate
JEC;

the constraint 3; > v;; V j € C;, which contradicts dual op-
timality). Now, since a feasible solution to the above primal
LP exists (trivially set all variables x;; = 0) and the objec-
tive function is bounded, there exists at least one solution X
that maximizes u/ x;. Suppose that for a given i, we have
BF > 0 and we were to assign x;; = 1,z5 = 0Vj # 5 for
some j' # j*: call this vector of primal variables x;. Then
the primal objective here would be u/x; < u/ %, since
vij* > v;; (assuming no ties), which contradicts. Therefore
zij» = 1,25 = 0V j # j* maximizes u; x;. Finally, the
Z;;’s are integral 0/1 variables (i.e.: we cannot have frac-
tional z;;’s that maximize u/ x;: to see this, we note that
the optimal allocation problem is equivalent to matching
bid requests i € U to a single ad j € V in a bi-partite graph
G = (U,V,E) where U is the set of bid requests, V is the
set of ads and E is the set of edges connecting nodes in U to
nodes in V. In particular, for a given bid request i € U, the
set of edges incident on i is C;. Now, the constraint in the
primal LP can be written as Gx < 1 with G being the inci-
dence matrix of G. Since G is (by construction) bi-partite,
G is totally unimodular [18] and so the primal LP only has
integral 0/1 solutions. [J



