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ABSTRACT
Nowadays, the development of most leading web services is
controlled by online experiments that qualify and quantify
the steady stream of their updates achieving more than a
thousand concurrent experiments per day. Despite the in-
creasing need for running more experiments, these services
are limited in their user traffic. This situation leads to the
problem of finding a new or improving existing key perfor-
mance metric with a higher sensitivity and lower variance.
We focus on the problem of variance reduction for engage-
ment metrics of user loyalty that are widely used in A/B
testing of web services. We develop a general framework
that is based on evaluation of the mean difference between
the actual and the approximated values of the key perfor-
mance metric (instead of the mean of this metric). On the
one hand, it allows us to incorporate the state-of-the-art
techniques widely used in randomized experiments of clinical
and social research, but limitedly used in online evaluation.
On the other hand, we propose a new class of methods based
on advanced machine learning algorithms, including ensem-
bles of decision trees, that, to the best of our knowledge,
have not been applied earlier to the problem of variance re-
duction. We validate the variance reduction approaches on
a very large set of real large-scale A/B experiments run at
Yandex for different engagement metrics of user loyalty. Our
best approach demonstrates 63% average variance reduction
(which is equivalent to 63% saved user traffic) and detects
the treatment effect in 2 times more A/B experiments.
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1. INTRODUCTION
Modern Internet companies improve their web services by

means of data-driven decisions that are based on online con-
trolled experiments also known as A/B tests [21]. The scale
of use of this state-of-the-art technique, in particular, in
search engines is impressive: Bing reported on more than
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200 run experiments per day in 2013 (this number grew ex-
ponentially over the years [20]), and Google conducted more
than 1000 experiments in any day in 2015 [16]. Since the
user traffic is limited for a web service, it is vital to effectively
use it for maintaining the upward trend of A/B testing.

An A/B test compares two variants of a service at a time,
usually its current version (control) and a new one (treat-
ment), by exposing them to two groups of users. The aim of
controlled experiments is to detect the causal effect of service
updates on its performance relying on an Overall Evaluation
Criterion (OEC) [23], a user behavior metric (e.g., clicks-
per-user, sessions-per-user, etc.) that is assumed to corre-
late with the quality of the service. The ability of an A/B
test to detect the statistically significant difference when the
treatment effect exists is referred to as the sensitivity [23].
Sensitivity of a particular A/B test could be increased ei-
ther by a larger sample of participated users, or by a more
powerful (more sensitive) OEC. Since user traffic is limited,
OEC’s sensitivity becomes a crucial aspect that affects the
number of experiments with detected treatment effect [23,
21]. That is why a wide set of studies [23, 7, 30, 6, 21, 5, 10,
8, 18, 29, 11] addressed the sensitivity and its improvement.

In this context, the engagement metrics of user loyalty are
of greatest interest, since, on the one hand, they are predic-
tive of long-term goals of Internet companies [19, 20, 21] and
often considered to be most appropriate for online evalua-
tion (e.g., sessions-per-user [30] is accepted as the “North-
star” for online controlled evaluation in major search engine
companies like Bing [20, 21]). On the other hand, they are
very insensitive to changes of a service [21] what results in
utilization of a very large amount of user traffic to achieve
a desired level of sensitivity to such small changes (usually,
experiments span weeks and cover hundreds of thousands
users). Previous work on sensitivity improvement for the
loyalty metrics has been limited either to alternative key
metrics (periodicity [9, 8] and transformation [11]), evalua-
tion statistics [11], and statistical tests [11], or to a virtual
increase of the duration of an experiment by peaking into
the future through prediction of the key metric [10].

Since the variance of a key metric reflects its noisiness,
a promising way to improve the sensitivity is to decrease
the variance [7]. First, the existing studies are limited to
only one form of the control variate technique and to only
one covariate in the context of large-scale online A/B tests.
Second, the empirical validation of the proposed approaches
is scant: only a couple of A/B tests is considered and the
achieved variance reduction rate is reported only approxi-
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mately (”up to 40–50%”). Finally, the approaches were not
applied to engagement metrics of user loyalty, while, as men-
tioned above, they are less sensitive than the ones considered
in the study, what may have had an effect on the reported
variance reduction rate.

Thus, in our study, we address the problem of variance
reduction (VR) for user engagement metrics and develop a
general framework that allows us to incorporate both the ex-
isting state-of-the-art approaches to reduce the variance and
some novel ones based on advanced machine learning tech-
niques. We are motivated by the following intuition. The
expected value of the key metric for a given user consists
of two components: (1) the expected value for this user ir-
respectively the treatment assignment and (2) the expected
bias of the value due to the treatment assignment (i.e., the
treatment effect for this user). Since the expectations of
the first component does not depend on the treatment as-
signment, this component does not contribute to the actual
average treatment effect, but may increase the variance of
its estimation. If we knew the value of the first component,
we would subtract it from the key metric and obtain a new
metric with decreased variance. However, since we cannot
evaluate the first component exactly, we propose to predict
it based on the attributes of the user that are independent of
the treatment exposure. Therefore, we propose to utilize, as
an OEC, instead of the average value of a key metric, its av-
erage deviation from its predicted value. We show that the
variance of the modified metric is proportional to the mean
square error of the predictor. In this way, the problem of VR
is reduced to the problem of finding the best predictor for
the key metric that is not aware of the treatment exposure.

The framework of our approach covers both the variance
reduction technique [7] earlier applied to online evaluation
and the ones that are well known in randomized experiments
in medicine, social sciences, etc. [14, 28], but, to the best of
our knowledge, were never applied in the case of large-scale
online A/B tests. At the same time, in our general approach,
we apply gradient boosted decision trees (that, as far as we
know, were never used to reduce the variance) and achieve
a significantly greater variance reduction than the methods
of the previous works. In this paper, we conduct our ex-
perimental analysis on 161 large-scale A/B experiments run
on real users of Yandex (www.yandex.com), one of the most
popular global search engines, with duration from one to
several weeks and user samples from 5 · 105 to 3 · 107 users.
This should make the results of our study more valuable for
practical use in modern Internet companies.

To sum up, our study focuses on the problem, which is
recognized as fundamental for the present and emerging In-
ternet companies’ needs: to conduct more online controlled
experiments per day. Specifically, the major contributions
of our work include:

• A new class of variance reduction methods based on
advanced machine learning, including ensembles of de-
cision trees, that, to the best of our knowledge, were
never used to reduce variance.

• Validation of our variance reduction approach on 161
real online experiments run at Yandex for different en-
gagement metrics of user loyalty, first, demonstrating
statistically significant 5.1% improvement of average
variance reduction over the best state-of-the-art VR
technique (which is equivalent to overall 63% saved
user traffic) and, second, detecting the treatment effect

in +20% more A/B tests than the best state-of-the-art
VR technique.

The rest of the paper is organized as follows. In Sec. 2,
the related work on controlled experiments and user engage-
ment is discussed. In Sec. 3, we remind the key points of A/B
testing and introduce the general framework of our variance
reduction approach. The user engagement metrics and the
data (in particular, our 161 A/B experiments) used to val-
idate our approach are described in Sec. 4. In Sec. 5, the
details of our prediction task are discussed and our predic-
tion models are evaluated with respect to different settings.
In Sec. 6, we validate our approach with respect to variance
reduction and sensitivity improvement of key user engage-
ment metrics. In Sec. 7, the study’s conclusions and our
plans for the future work are presented.

2. RELATED WORK
Online controlled experiment studies. A/B testing

methodology achieved a very high popularity in Internet in-
dustry over the past few years what is reflected in the re-
cent explosion in the number of published studies on this
topic. Early studies [22, 23] were devoted to the theoreti-
cal aspects of the methodology. Subsequent work included
studies of various aspects of the application of A/B testing
in Internet companies: evaluation of changes in various com-
ponents of web services (e.g., the user interface and ranking
algorithms [30, 9, 29]); large-scale experimental infrastruc-
ture [31, 20] and optimal scheduling of the experimentation
pipeline [17]; different parameters of user interaction with
a web service (speed [21], absence [12], abandonment [21],
periodicity [9, 8], and engagement [9, 10, 8, 11]); effects of
long-term user learning [16]. Many“rules of thumb”, pitfalls,
and puzzling outcomes of online controlled experimentation
were summarized in several studies [4, 19, 21] devoted to the
trustworthiness of A/B test results.

A substantial number of studies were devoted to the prob-
lem of improving sensitivity of online experiments and sav-
ing user traffic in them, what reflects the actual needs of
a modern Internet company: to detect the treatment ef-
fect in more experiments while expending available resources
optimally. Some approaches (to improve sensitivity or to
optimize resources) are focused on the alterations of the
user groups involved in an A/B experiment (e.g., expand-
ing of user sample [23], elimination of users who were not
affected by the service change in the treatment group [30,
5]), as well as changes of the experiment duration (either
real increasing [23], or virtual one through the prediction
of the future [10]). Some other studies address the prob-
lem through a search of more sensitive metrics and their
transformations [21, 9, 8] or through the use of more ap-
propriate statistical tests and overall acceptance criteria:
statistical tests for two-stage A/B experiments [6], sequen-
tial testing for early stopping [18], the optimal distribution
decomposition approach [29], and thorough comparison of
different evaluation statistics and statistical tests [11]. Fi-
nally, this problem is addressed by the variance reduction
techniques that are known from Statistics [28] and digital
simulation [32]: the stratification and control covariates [7].

Overall, the studies [10] and [7] are the most relevant ones
to our work in the context of online controlled experiments.
Drutsa et al. in [10] utilized prediction of user engagement
to improve sensitivity of an A/B experiment in another way
than we do. They used user behaviour observed during the



experiment period to predict the value of an engagement
metric of each individual user in a future (post-experiment)
period, and, then, they used these values as a more sensi-
tive key metric. While, in our study, we use user behaviour
observed during the pre-experiment period to predict a key
engagement metric of each individual user in the experiment
period, and, then, we improve the sensitivity of the key met-
ric by subtracting the predicted values from the actual values
of the key metric. Deng et al. in [7] are the first who pro-
posed to utilize pre-experiment data in order to reduce the
variance of a key metric. However, their study was limited
to the basic forms of control variates techniques that were
based only on one feature and were validated via scant em-
pirical analysis (over a pair of A/B tests). This technique
is a particular case of our general framework (i.e., the linear
model based on one covariate) and, therefore, is considered
as a baseline in our study. Besides, we experiment with a
very large and diverse set of 161 large-scale A/B tests based
on actual interactions of hundreds of thousands of real users.

Randomized experiments in general. Actually, the
idea proposed by Deng et al. [7] is not novel in the context of
the statistical theory of randomized experiments (random-
ized control trials, etc.) and their widespread application in
clinical researches and other research areas (e.g., the social
sciences). Many variance reduction techniques, initially con-
sidered in digital simulation [32, 24], were also actively used
in the randomized experiments [14, 28]. There are meth-
ods that do not change experiment randomization design
(e.g., control variates) and methods that change it (block-
ing, pre-stratification, re-randomization, etc. [1, 27]). Con-
trol variates approach is based on a linear model of several
covariates (also known as regression adjustment [13]) that
approximates the key metric (either by the usual method of
ordinary least squares [13, 25], or by a more complex one like
Lasso [3]). This technique is a particular case of our general
framework (where the learning model built on all available
covariates is linear) and, therefore, is also considered as a
baseline one in our study (as a straightforward extension of
Deng et al.’s approach [7]). In our study, we also consider
a technique of matching, which is often used in observa-
tional studies [14, 28] to reduce bias in the treatment effect
estimation, but could be applied for variance reduction in
randomized experiments as well.

Overall, in the context of randomized experiments, on the
one hand, our work addresses and provides a verification of
the state-of-the-art variance reduction technique on a very
large set of large-scale online experiments with at least hun-
dreds of thousands experimental units (in contrast to clin-
ical and social studies). On the other hand, we apply the
advanced machine learning method (gradient boosted de-
cision trees1) that noticeably improves the state-of-the-art
variance reductions, and, thus, it should be of interest from
the perspective of randomized experiments in general.

3. FRAMEWORK

3.1 A/B testing background
Assume that we need to compare the performance of a

new variant B (the treatment) of a web service and the cur-

1Similar approaches were applied to reduce bias in the treat-
ment effect estimation in observational studies [26], but, to
the best of our knowledge, were not applied to VR problems.

rent production variant A (the control) w.r.t. a key metric
X, which quantifies user behavior2. Formally, one needs to
estimate the average treatment effect (ATE) defined as

ATE(X) = E(X | B)− E(X | A). (1)

In an A/B test (a randomized experiment) [23, 19, 21, 14,
28], users (from a set U referred to as the user traffic), partic-
ipated in the experiment, are randomly exposed (assigned)
to one of the two variants of the service (i.e., U = UA tUB).
In order to estimate ATE(X), one estimates each term in
Eq. (1) by the average values µV (X) = avgUV X, V ∈ {A,B}
(given the observations of metric X for each user group
UV , V ∈ {A,B}), where avgΩX =

∑
ω∈Ω X(ω)/|Ω| is the

Overall Evaluation Criterion (OEC, also known as the eval-
uation metric, the online service quality metric, etc. [23]).
Their difference ∆(X) = µB(X)−µA(X) is used as an esti-
mator of ATE(X) to quantify its sign and magnitude.

The absolute value |∆(X)| of the estimator should be con-
trolled by a statistical significance test that provides the
probability (called p-value and also known [11] as the achieved
significance level, ASL) to observe this value or larger under
the null hypothesis, which assumes that the observed dif-
ference is caused by random fluctuations, and the variants
are not actually different. If the p-value is lower than the
threshold pval ≤ α (α = 0.05 is commonly used [23, 7, 21,
9, 10]), then the test rejects the null hypothesis, and the
difference ∆(X) is accepted as statistically significant. The
pair of an OEC and a statistical test is referred [11] to as
an Overall Acceptance Criterion (OAC ). In our study, we
utilize the widely applicable two-sample t-test3 (as in [7, 30,
6, 9, 5, 10]). This test is based on the t-statistic:

∆(X)/
√
σ2
A(X) · |UA|−1 + σ2

B(X) · |UB |−1, (2)

where σV (X) is the standard deviation of the metric X over
the users UV , V = A,B. The larger the absolute value of
the t-statistic, the lower the p-value. The additional details
of the A/B testing framework could be found in the survey
and practical guide on online experiments [23] or in some
books on randomized experiments in general like [14, 28].
A practical comparison of different key metrics, evaluation
statistics, and statistical tests on a large set of online exper-
iments could be found in [11].

3.2 Variance reduction via subtraction of pre-
diction

In this subsection, we introduce our general framework of
the studied variance reduction approach, while, in the next
one, we show how it could incorporate different particular
cases investigated previously in the literature. To begin,
the definition (2) of t-statistic implies that the p-value may
be reduced either by an increase of the sample size |U|, or
by a reduction of the sample variance σ2

U (X). Hence, a

2From here on in this paper, we consider “per user met-
rics” [4, 11], which are calculated for each individual user.
This type of metrics (e.g., the number of sessions for a user)
is a popular choice for web services [19]. However, there are
also frequently used non-per user metrics [4] like presence-
time-per-session [11], the annual revenue [21], etc.
3The key metric may not follow some assumptions under-
lying this test, such as the normality of the metric’s distri-
bution. However, for large user samples, like those used in
our study, the statistical test is correctly applicable [11] for
engagement per-user metrics considered in this study.



reduction of the variance by a factor κ allows us to reduce
the sample size |U| by the same factor κ while preserving
the sensitivity level achieved before the variance reduction.
Hence, the percent of reduced variance is equal to the percent
of saved user traffic, while preserving the same conclusions
made in the experiments.

The motivation. Suppose that we are able to charac-
terize a user u by a set of attributes Fu ∈ Rn that are
independent of the treatment assignment V ∈ {A,B}. We
represent the value of the key metric X as X = M1(F) +
M2(F, V ) + X ′, where M1(F) = E(X | F) is the expecta-
tion of the key metric X over users with the attributes F,
M2(F, V ) = E(X | F, V )− E(X | F) is the expectation bias
of the metric for users with a given assignment V , and X ′ =
X−E(X | F, V ) is a noise, i.e., the unpredictable part of the
key metric. Then the OEC’s ∆(X) consists of three terms:
µB(M1(F)) − µA(M1(F)), µB(M2(F, B)) − µA(M2(F, A)),
and µB(X ′)−µA(X ′). The second term is an unbiased esti-
mator of ATE(X), while the first and the third ones do not
affect it, since their expectations are zero. They only make
contribution to the variance of the estimate. If we could
accurately measure the value of M1(F) and X ′ on the basis
of the available data about users (Fu, Vu), we would have
subtracted them from our key metric, and, thus, would im-
prove our OEC. In fact, we cannot calculate the third term,
but the first term can be approximated.

The approach. Let X̃ be a predictor of the key metric

X such that X̃ does not depend on the treatment exposure.

Then we propose to utilize the difference
4

X = X−X̃ between

the actual metric value X and the predicted one X̃ as a
novel key metric in the OEC. We reveal two properties of

the proposed key metric
4

X, which make it more effective
than the original metric X. First, we note that

ATE(
4

X) = E(X − X̃ | B)− E(X − X̃ | A)

= E(X | B)− E(X | A)− (E(X̃ | B)− E(X̃ | A))

= ATE(X)− (E(X̃)− E(X̃)) = ATE(X),

(3)

where we used the independence of the predictor X̃ with

respect to the treatment. Thus, the difference ∆(
4

X) of the
novel metric is an unbiased estimator of the treatment effect
for the source metric X. Hence, the OEC based on

4

X =

X − X̃ could be used instead of the one based on X.
Second, we introduce the following assumptions that may

be satisfied by a predictor: (A1) a predictor minimizes the
Root Mean Square Error, RMSE (i.e., it is optimal) in a class
of learning models, which is (A2) closed under addition of a
constant and (A3) closed under scalar multiplications.

Then, on the one hand, the variance of the metric
4

X is

Var(
4

X) = E
(
(X − X̃)2)− (E(X − X̃)

)2
, (4)

where the first term is, by definition, the square of the RMSE

of the predictor X̃ and the second term is equal to 0 in

the case of an unbiased predictor X̃ (i.e., if E(X̃) = E(X),
what holds under the assumptions (A1,2)). In this case, the
identity (4) transforms to

Var(
4

X) = RMSE2(X, X̃), (5)

which states that the variance of the novel metric
4

X = X−X̃
is directly proportional to the loss of the predictor X̃ (in
terms of the MSE). In this way, the better the predictor of

the key metric X, the lesser the variance of the modified

metric
4

X, and thus the lesser the volume of the user sample
U required to obtain a certain confidence level.

On the other hand, we know (see, e.g., [10]) that, if the

predictor X̃ is unbiased and satisfies the assumptions (A1,3),

then the following identity holds: Var(X) = Var(X̃)+Var(X−
X̃), which implies

Var(
4

X) = Var(X)−Var(X̃). (6)

Intuitively, the subtracted term Var(X̃) corresponds to the
variance of the term M1(F) in the motivation above. The

last identity shows that the variance of the difference
4

X is
lower than the variance of the source metric X in the case
when our predictor is not a constant and satisfies (A1,2,3).
These conditions are satisfied by a wide range of prediction
model classes including linear models and the state-of-the-
art ensembles of decision trees [15].

To sum up, (a) Eq. (3) implies that the ATE for the re-

fined metric
4

X is equal to the ATE for the source metric X;
(b) the direct relationship between the variance of the re-

fined metric
4

X and the quality of the unbiased predictor X̃
is stated in Eq. (5); (c) Eq. (6) guarantees a variance reduc-

tion in the case of a non-degenerate predictor X̃ satisfying
the conditions (A1,2,3).

3.3 Details of prediction and special cases
A fundamental approach to obtain a predictor of some

target quantity for a set of entities O is to construct a
map M , which depends only on n entity’s features F(o) =
(F1(o), ...., Fn(o)), o ∈ O, n ∈ N. In our case, set O = U con-
sists of users, M is referred to as the prediction model, and

the target is the key metric X. Thus, X̃(u) = M(F(u)). In
our approach, it is crucial that the features F are indepen-
dent of the treatment assignment. In Sec. 5, we narrowly
discuss the targets, features, and models used in our study.

Training set. In order to obtain an optimal map M that
has the best prediction quality (i.e., the RMSE in our case)
among models from a class M, a machine learning technique
is applied to a training set of examples. According to the
usual practice, the prediction process is conducted in the fol-
lowing manner: (a) we train and retrieve an optimal model
M based on some examples, whose target is known; (b) we
apply this model to the entities whose target is currently un-
known. Following this, in our study, we collect some dataset
of user behavior observed earlier than the time when our
A/B experiments are conducted and use an earlier starting
time point when calculating both the feature values and the
target to train the model. After that, we use this model to
predict the key metric measured in our experiments (e.g., as
it is done in [10]). We call such a model a global predictor.

However, our VR approach does not require a prediction
model prior to a conducted experiment, since the calculation

of the OEC (where the predictor X̃ is used) is performed
only after the values of the source metric X are known. At
the same time, we know that user behavior significantly de-
pends on a time period, where this behavior is considered [9].
Therefore, the relationship established between features F
and the target X by a model M may differ over different
periods. These observations motivate us to train the model
on a dataset of examples from the time period, where the
obtained predictor will be applied to reduce the variance



of the key metric. We expect that this will lead to an im-
provement of the prediction quality compared to the global
predictor. In this way, we obtain a local predictor, which is
trained individually for each experiment.

Moreover, we can use any subset of the experiment’s user
traffic (both from the treatment and the control groups) as
the training set, since the model outputs M(F) will satisfy
the condition of independence of the treatment assignment
as far as they depend only on features F that satisfy this con-
dition themselves (any map M is independent of users itself
and, thus their treatment assignment). For a large dataset
like the one used in our experiments, we did not observe any
significant overfitting to the training set and we also did not
observe any decrease in the variance reduction rate when
using the same dataset of users to train a predictor and to
estimate ATE(X). We compare global and local predictors
in our experimentation presented in Sec. 5.4 and 6.

Control variates. In a particular case, where we learn
a linear predictor M(F ) = θF, θ ∈ R based on only one fea-
ture F , we obtain the approach considered in [7]. The best
model is determined as the ordinary least square (OLS) so-
lution with θ0 = Cov(F,X)/Var(F ) estimated either from
the considered experiment’s data, or from a period before
the experiment. This variance reduction technique is known
as control variates, and, to the best of our knowledge, [7,
5] are the only studies, where this technique is applied to
large-scale online experiments (with only one covariate in
both cases). However, this technique (also known as linear
regression adjustment) is thoroughly studied in the theory
of randomized experiments and widely used in offline stud-
ies (like clinical or social ones) for more than one covariate
as well [13, 14, 25, 28, 3]. Namely, in terms of our general
framework, this technique is based on the class of linear mod-
els (i.e., M(F) = a0 +

∑n
j=1 ajFj , (aj)

k
j=0 ∈ Rn+1), where

the best one is usually determined by the OLS solution [13,
14, 25, 28]. Thus, this state-of-the-art variance reduction
technique is a particular case of our approach. To the best
of our knowledge, the technique was never previously applied
to large-scale online A/B testing studies based on several co-
variates. We apply it in our empirical study both to one (as
in [7]) and to all available features (Sec. 5.4 and 6).

Machine learning. The crucial peculiarity of online ex-
periments is large amounts of user data that need to be pro-
cessed (usually at least hundreds of thousands experimental
units) and complicated dependence of evaluated metrics on
covariates, hence we believe that advanced methods of ma-
chine learning would work especially effective in this case.
Therefore, in our paper, we propose to apply them to the
problem of variance reduction. Namely, we find the opti-
mal prediction model in the class of ensembles of decision
trees by means of the state-of-the-art Friedman’s gradient
boosted decision tree (GBDT) method [15]. To the best
of our knowledge, no existing study on variance reduction
in randomized experiments (both online and offline) inves-
tigated such a machine learned model. The fact that linear
regression adjustment [13, 14, 25, 28, 3] uses the same data
for learning parameters and for measuring adjusted metric
supports our idea to proceed in a similar manner, when we
apply GBDTs.

Matching. This approach is based on the idea of find-
ing a similar user (or a set of similar users) from the group
UA (UB) for each user from the other group UB (UA respec-
tively). Matching is usually applied to reduce the bias of a

Figure 1: Joint distribution of 161 studied A/B tests
w.r.t. their duration and the user traffic.

treatment effect estimation in the context of observational
studies, when the randomized assignment is not possible [14,
28], but it also could be used in randomized experiments as a
particular case of our general framework. In most matching
techniques (e.g., k-nearest neighbours, kNN), the criteria of
the similarity is based on a distance in the space of user fea-
tures F ∈ Rn. In terms of machine learning, for a user u,
the value X(um) of the matched user um (or a combination
of the metric’s values for a set of matched users {um}) could
be considered simply as a approximated value of the metric
for the user u (e.g., estimated by kNN) that could be ob-
served if user u would be assigned to the other group. Hence,
first, the machine learning methods used in matching could
also be utilized in our approach, and, second, advanced ma-
chine learning methods could be applied in matching tech-
niques. In the first case, machine learning methods usually
used in matching (like kNN) [14, 28] are very computation-
ally costly considering the sizes of our user samples (from
5 · 105 to 3 · 107, see Sec. 4) and, thus, are infeasible for our
large-scale experiments. In the second case, one could apply
the state-of-the-art GBDT method [15] to get the following
matching estimator of the ATE(X)4:

∆match(X) =
|UB |

|UA ∪ UB |
∆(

4

XA) +
|UA|

|UA ∪ UB |
∆(

4

XB), (7)

where X̃V is a predictor of the metric X trained on users

UV , V = A,B (via GBDT, in our study),
4

XA(u) := X(u)−
X̃A(u) and

4

XB(u) := X(u)− X̃B(u).

4. STUDIED METRICS AND A/B TESTS
User engagement metrics. In this paper, we concen-

trate on the study of the loyalty aspect of user engage-
ment [30, 12, 10], since, on the one hand, the metrics measur-
ing this aspect are predictive of long-term goals of Internet
companies [19, 20, 21] and are widely used in A/B testing
practice [21, 10, 11]. On the other hand, these metrics are
difficult to shift by a web service update [21]. Hence, even in
the case when such metric X is able to catch the treatment
effect during an A/B test, its ATE(X) is expected to be
small in comparison with the variance of the metric. There-
fore, catching such small effect with a desired statistical sig-
nificance level will most probably require more resources
(more users participating in the experiment over a longer
period) than by means of such easily changeable activity-
related metrics as, for instance, the number of clicks [21].
This fact was also observed in the recent comparisons [9, 10,
8, 11]: the activity metrics detect the treatment effect in up
to 4 times more experiments than the loyalty ones.

4Due to space constraints, we omit details and refer a reader
to [14, 28], where Eq. (7) is derived for kNN.



Following common practice [19, 12, 30, 10], we define a
session as a sequence of user actions whose dwell times are
less than 30 minutes. In this paper, we use browser cookie
IDs to identify users as done in other studies on user engage-
ment and online A/B testing [31, 12, 30, 9, 16]. We study
two key metrics X for a user: the number of her sessions S
(as in [30, 9, 10, 11]) and the absence time per session ATpS,
which is measured as the total absence time (the duration
of the whole time period, where the key metric is measured,
minus the sum of the durations of all her sessions) divided
by the number of sessions S (as in [10, 8, 29]). Due to space
constraints, we mainly discuss and analyse the details of our
approach for the state-of-the-art sessions-per-user OEC in
Sec. 5 and 6. But the final empirical validation of the ef-
fectiveness of our approach is also reported for metrics S,
ATpS, and for some of their modifications (see Sec. 6.3).

Our A/B experiments. In our paper, we consider 161
large-scale A/B experiments conducted on the users of Yan-
dex with duration from 7 to 30 days lasted in 2013 and 2014
years. The user samples used in our A/B tests are all uni-
formly randomly selected, and the control and the treatment
groups are approximately of the same size. The total number
of users participated in each experiment varies from 5 · 105

to 3 ·107 users. The joint distribution of these 161 A/B tests
with respect to their duration and the size of their sample
of users is presented in Figure 1. Each experiment evalu-
ates a change in one of the main components of the search
engine (including the ranking algorithm, the user interface,
the server efficiency, etc). Each of these changes is either an
artificial deterioration of a search engine component5 [20],
or its update, which is evaluated before being shipped to
production. Each experiment is verified against the absence
of a carry-over effect [19] from the past, i.e., we explicitly
check that there is no statistically significant difference in
the considered OEC between the user groups in the 2-week
period before the experiment.

5. PREDICTION
In this section, due to space constraints, only the number

of sessions is considered as our prediction target.

5.1 Prediction data
The user behavior data are collected both from the pe-

riod of an experiment (the experiment period) and from the
2-week period before the experiment (the pre-experiment pe-
riod). The data from the experiment period are used to ob-
tain the key metric, while both periods are used to obtain
features utilized by a predictor of the key metric. Hence,
our user engagement prediction problem has the following
setting. One has user behavior data observed during two
consecutive time periods. Then, one needs to estimate the
value of a target engagement metric calculated over the sec-
ond period for each individual user based only on his behav-
ior (observed in both periods) which is not affected by the
variant of the web service. Some investigations of the length
of the pre-experiment period could be found in the context
of the future user experiment prediction in [10] and in the
context of variance reduction in [7].

In order to train our prediction models, we either utilize
the user behavioral data from the experiments’ periods (in

5like the swap of the second and the fourth results in the
ranked list returned by the current ranking [9, 29].

Table 1: Comparison of feature sets and models in
terms of the average value of nRMSE over 161 A/B
tests (relative improvement w.r.t. the first row).
Feature set \ Model Linear Regression Decision Trees

Total 0.8823 (0%) 0.8972 (0%)

Total ∪ TS 0.8594 (−2.59%) 0.8531 (−4.91%)

Total ∪ TS ∪ CT 0.8479 (−3.9%) 0.8213 (−8.46%)

All 0.8418 (−4.59%) 0.8203 (−8.57%)

this case, we get an individual local predictor for each exper-
iment), or utilize the data collected far before these periods
(in this case, we get one global predictor for experiments
of the same duration), see Sec. 3.3. For the latter purpose,
we additionally collected the behavioral data from 2013, by
randomly selecting users and 3-week periods, in which the
target is calculated over the last week and the two first weeks
are used to calculate features (like for a pre-experiment pe-
riod in an A/B test). As a result, we obtained a training
set with 2.5 · 105 examples, which are then used to train a
global predictor for 1-week A/B experiments (see Sec. 5.4
and 6.1).

5.2 Features
In our prediction models we utilize the following features

to predict the value of the target metric. Note that all of
them are measured based on events that are not affected by
the service version observed during the experiment.

The total feature. First, we consider the value of the
key metric X calculated over the pre-experiment period as
our main feature. On the one hand, this feature is reported
in [10] as the most predictive one of the value of X in the
future period (i.e., the period of an experiment in our case).
On the other hand, such feature is known as an effective
one in the control variate technique considered to reduce
variance in [7]. We denote this feature by Total.

The time series. Second, we use the values of the key
metric X calculated over each day of the pre-experiment
period, obtaining a daily time series of length 14. Then, for
each day, except the first day, of the pre-experiment period
t = 2, .., 14, we calculate the key metric X over the time
period that starts on this day t and finishes on the last day
of the period. In this way, we obtain the cumulative time
series of length 13. Actually, the cumulative time series is
a set of features similar to Total, but calculated over the
shorter pre-experiment periods of length from 1 to 13. The
time series are known to be useful to improve the prediction
quality of engagement metrics [10]. We refer to these 27
features as TS.

The cookie timestamps. Since a user’s cookie may be
created during an A/B experiment or some days before it,
the information presented in the pre-experiment period (the
above mentioned features) will not completely describe the
actual behavior of the user. For instance, a user could be
very active and could use the considered web service each
day, but if she clears cookie files in her browser right before
the experiment, a new cookie id will be assigned to her, and
the number of sessions for this cookie id over 14 days be-
fore the experiment’s period will be equal to zero, that will
represent the user as an inactive one. Hence, in order to dis-
tinguish inactive users and users that cleared theirs cookies
shortly before the experiment and, thus, assess the confi-
dence in the information contained in the pre-experiment
data, we consider, as features important for the prediction



Figure 2: The joint distributions of 161 A/B experiments w.r.t.: (a) (their user traffic; predictor’s nRMSE)
and (their duration; predictor’s nRMSE) for 3 prediction models (LR@Total, LR@All, and DT@All); (b) (their
user traffic; the VR rate κ) and (their duration; the VR rate κ) for the approach based on DT@All.

task, the differences te − tc, tf − te, and tf − tc (denoted by
CT), where tc is the creation time of the user cookie; tf is
the time of the first entrance6 of the user in the experiment7;
and te is the time of the experiment start, which is a con-
stant for all users. Note that the time of the first entrance
tf does not depend on the treatment assignment (although,
it is collected during the experiment’s period), hence it does
not violate the condition of independence of the predictor
that is critical for Eq. (3).

The transformation features. The study [10] shows
that the prediction quality could be noticeably improved by
transformations of the daily time series from TS, namely,
by the ones that reflect the periodicity (e.g., discrete Fourier
amplitudes [9]) and the average amount of information (e.g.,
different variants of entropy [10]) of user engagement. We
utilized 20 most profitable transformations according to the
study [10]. We refer to these features as TrTS.

We define the set of all features described above by All =
Total ∪ TS ∪CT ∪ TrTS. Note that features Total, TS,
and TrTS are different characteristics of the dynamics of the
metricX. We could also use the same characteristics of some
other metrics as features to better predict the target value of
X. Investigation of this idea in [10] showed that, in the case
of X = S, these characteristics of other user engagement
metrics (considered in [10]) do not noticeably improve the
prediction quality, while, in the case of X = ATpS, these
characteristics of both ATpS and S are useful. Hence, for
the absence time per session as the target, we use both ATpS
and S to derive the features, while, for the number of sessions
as the target, we use only S.

5.3 Models
We utilized two models to predict the values of the targets

by minimizing the RMSE as the loss function.

6the first activity of the user since the start of the A/B test
7This time is more informative than the day of the first
entrance (a categorical feature) used as a covariate in [7].

Linear model (LR). The first one is a classical linear re-
gression model, which regards the prediction as an ordinary
least square (OLS) problem. When the training set coincides
with the data of a considered A/B test (i.e., we deal with
a local predictor, see Sec. 3.3), our variance reduction ap-
proach in the case of this model becomes the classical linear
regression adjustment on a set of covariates that is applied in
randomized experiments in clinical studies, social sciences,
etc. [14, 28]. Therefore, we consider the linear prediction
model built on the feature Total (i.e., the total number of
sessions during the 14-day pre-experiment period) as our
first baseline model (since it coincides with the one applied
earlier in online experimentation [7]), and we consider the
linear prediction model built on all available features as our
second baseline (since it was previously used in randomized
experiments [13, 14, 28, 25, 3], but never applied to large-
scale online A/B tests).

Decision trees’ model (DT). The second model is the
state-of-the-art Friedman’s gradient boosted decision trees
[15]. In our experimentation (Sec. 5.4 and 6), we use a pro-
prietary implementation of the machine learning algorithm
with 100 iterations and 100 trees, where features were pro-
cessed by means of the equal frequency binning with 64 bins.

We use the short notation M@FS for a model M built on
features FS (e.g., DT@All denotes decision trees built on
the features All and LR@Total denotes the linear regression
model based on the feature Total).

5.4 Prediction quality
In order to validate the quality of our predictors, we utilize

all our 161 A/B experiments. For each experiment, we mea-
sure the prediction quality in terms of the normalized RMSE

(nRMSE) defined by nRMSE(X, X̃) := RMSE(X, X̃)/E(X)

for the actual target X and the predictor X̃. This allows us,
first, to hide the information about the magnitude of the
studied metric for confidentiality reasons, and, second, to
make the quality measure independent from this magnitude



(e.g., when we report the average values), since it signifi-
cantly depends on the durations of an experiment [9, 10].

Comparison of features and models. In Table 1, we
report the average value of the nRMSE for each local predic-
tion model based on different feature sets over all our A/B
experiments. All differences between the presented nRMSE
are statistically significant with p-value ≤ 10−3 (measured
by paired t-test over the A/B experiments). First, we see
that the best predictor is decision trees which is based on
the set of all features. Second, our novel timestamps fea-
tures CT noticeably improve the prediction quality w.r.t.
Total ∪ TS: by 1.31% for the linear model and by 3.55%
for decision trees. The features CT carry information about
different types of users and, thus, resemble categorical fea-
tures, so the decision trees may better utilize these features
than the linear model. Third, the transformation features
TrTS improve the prediction quality as well. Note that this
improvement is around of 0.11% for decision trees, hence, for
this model, one can use the set of features Total∪TS∪CT
in order to reduce the computational complexity without a
critical loss in prediction quality. Summarizing, we conclude
that decision trees built on all features (DT@All) signifi-
cantly outperforms our baselines: LR@Total by 7.2% and
LR@All by 2.55%.

Duration and user traffic. We study the dependence of
the prediction quality on the duration of an experiment and
on the number of users participated in it. In Figure 2 (a),
we report the joint distributions of our 161 A/B experiments
w.r.t. the nRMSE and each of these two quantities in the
logarithmic scale, due to the space constraints, only for the
baseline predictors LR@Total, LR@All and for the best
one DT@All. First, we see that the prediction quality only
weakly depends on the size of user samples: the slope of
the best fit line is very low (from 0.007 to 0.008) and its
standard error (SE) is hight (≈ 0.01). It is an expected
result, since the prediction quality should not depend on
the size of the training and test data, when their sizes (in
our case, at least hundreds of thousands users) are large
enough w.r.t. the number of features (in our case, no more
than a hundred). Second, the prediction quality in terms
of the nRMSE clearly linearly depends on the duration of
the experiment: the slope of the best fit line is high (from
0.187 to 0.206) and its SE is very low (from 0.006 to 0.007).
Thus, we conclude that the longer an experiment, the worse
the quality of prediction, which is expected since the pre-
experiment data of a user becomes more uncertain about
her future behavior.

Local vs. global predictor. The results presented above
are obtained for local predictors, i.e., the models are trained
on all user traffic U8 for each experiment individually (see
Sec. 3.3 for details). In order to understand the advantage
of the utilization of a local training w.r.t. to a global one,
first, we use the dataset collected from 2013 (described in
Sec. 5.1) as the training set for a global predictor. Second,
we truncate the duration of all experiments to one week and
filter out A/B tests from 2013 year, obtaining a reduced set
of 146 experiments of 2014 year. Thus, these experiments
occurred later than the training data and have the same
duration as the length of the target period of the training
examples. On these A/B tests, we compare the nRMSE of

8We considered different user sets as train data (including
the control or the treatment user set solely) for local predic-
tors, but the prediction quality was not noticeably different.

the local predictor DT@All and the global one, which is
based on the same learning model and the same feature set,
but trained on the above described training set from 2013
year. The average nRMSE of the global predictor is 0.755,
while the one of the local predictor is 0.726, which is lower
by 3.96%. Thus, we conclude that a predictor, trained on the
data from the experiment’s period, definitely outperforms the
predictor with the same model and the same set of features,
but trained on a dataset collected from a far earlier period.
This has been expected, since user behavior significantly de-
pends on a time period, where this behavior is considered [9]
(see Sec. 3.3).

6. A/B EXPERIMENTATION
In the context of variance reduction (VR) and sensitivity

improvement, we consider 3 main baseline methods for our
approach. The first one is the ”zero” baseline, which is our
source metric without any modification (e.g., the number of
sessions in Sec. 6.1 and 6.2). The other two baseline meth-
ods are simplified versions of our approach: one technique
coincides with the one applied earlier in online experimenta-
tion [7] (it is based on LR@Total), and the other is its ex-
tension based on the practice of randomized experiments in
clinical and social studies [14, 28] (it is based on LR@ALL).

6.1 Variance reduction
We remind, see Sec. 3.2, that the performance of a vari-

ance reduction method is measured in terms of the reduction
rate κ(X,

4

X) := Var(
4

X)/Var(X), where X is the source key

metric and
4

X is the modified one by the method.
Comparison of features and models. In Table 2, we

report the average value of the variance reduction rate κ for
each local prediction model9 based on different feature sets
over all our A/B experiments. All differences between the
presented VR rates are statistically significant with p-value
≤ 10−3 (measured as in Sec. 5.4). First, we see that the best
VR method is the one which utilizes decision trees based on
the set of all features. It achieves 62.66% of saved user traf-
fic on average (see Eq. (2) and Sec. 3.2). Second, each set
of features demonstrates a significant profit in terms of vari-
ance reduction: the time series TS and our novel timestamps
features CT noticeably improve the variance reduction rate
κ (e.g., for CT, by 2.76% and by 7% for LR and DT mod-
els respectively); the transformation features TrTS have a
lower but positive improvement as well. Third, note that,
in all cases except the one with one feature Total, deci-
sion trees has better performance than the one of the linear
regression based on the same set of features. Overall, we
conclude that decision trees built on all features (DT@All)
significantly outperforms our baselines: LR@Total by 13.9%
and LR@All by 5.1% in terms of the variance reduction κ
and, hence, in terms of saved user traffic.

Duration and user traffic. We study the dependence
of the variance reduction rate on the duration and the user
traffic size of an experiment. In Fig. 2 (b), we plot the joint
distributions of our 161 A/B experiments w.r.t. the rate κ
and one of these quantities in the logarithmic scale. Due to
space constraints, the results are presented only for the best
method, which is based on DT@All, but they are similar for

9Local predictors are better than global ones in terms of
nRMSE (see Sec. 5.4) and in terms of κ (e.g., relative dif-
ference of κ for DT@All is 4.71%).



Table 2: Comparison of feature sets and models in
terms of the average VR rate κ over 161 A/B test
(relative improvement w.r.t. the previous row).
Feature set \ Model Linear Regression Decision Trees

The source metric 1 (0%) 1 (0%)

Total 0.4337 (−56.63%) 0.4481 (−55.19%)

Total ∪ TS 0.4108 (−5.27%) 0.4046 (−9.7%)

Total ∪ TS ∪ CT 0.3995 (−2.76%) 0.3743 (−7.49%)

All 0.3935 (−1.5%) 0.3734 (−0.25%)

all other methods. First, we see that the variance reduction
weakly depends on the size of user samples (the slope of
the best fit line ≈ 0.003 with SE ≈ 0.0029). Second, the
variance reduction is weakly depends on the duration of the
experiment as well (the slope of the best fit line≈ −0.01 with
SE≈ 0.0043). Thus, we conclude that the variance reduction
rate of our methods weakly depend on the user traffic size and
the duration of an experiment. The last result, together with
the dependence of nRMSE on the duration (see Sec. 5.4),
implies that this dependence of nRMSE is caused by the
dependence of the z-score z(X) := E(X)/

√
Var(X) on the

duration, since nRMSE2(X, X̃) = κ(X,
4

X)/z2(X) for an

unbiased predictor X̃ (see Eq. (5)). The decrease of our z-
score z(X) with the growth of the experiment duration is a
reproducing of the well known property of the number-of-
sessions metric [19].

Matching. For the matching estimator ∆match(X) de-
fined by Eq. (7) and described in Sec. 3.3, we obtain the
variance reduction rate equal to κ = 0.3749. Hence, the rel-

ative improvement of the rate κ of the estimator ∆(
4

X) based
on the predictor DT@All w.r.t. the one of the matching es-
timator ∆match(X) is equal to 0.39%. Thus, we conclude
that our approach based on the classical form of the estima-

tor ∆(
4

X) outperforms the matching estimator ∆match(X)
with matching based on the same model (i.e., decision trees)
and the same set of features (i.e., All).

6.2 Sensitivity improvement
Control of false-positive rates. In A/B testing, cor-

rectness of an experimentation is verified by A/A tests (i.e.,
control experiments) [23, 4]. Each of them compares two
identical variants of the service. If a considered OAC (i.e.,
an OEC with a statistical test, see Sec. 3.1) is valid, then
the p-value of this OAC should be uniformly distributed
over [0, 1] on A/A tests and the A/A tests should fail in not
more than 5% of cases for the p-value threshold α = 0.05 [23,
4, 11]. The number of failed A/A tests is referred to as the
false-positive rate (also known as the type I error). We ob-
tain a thousand of A/A experiments (like in [2, 7, 11]) by
randomly splitting users from the control group of one of
our A/B experiments. All our source and modified metrics
do not fail the predefined false-positive rate threshold.

Success sensitivity rates. Following [9, 10, 8, 29, 11],
we compare the sensitivity of our OACs in terms of the suc-
cess sensitivity rate, i.e., the number of A/B tests whose
treatment effect is detected by an OAC. In Table 3, we
present these rates for our source metric X (i.e., the number

of sessions) and for the metrics
4

X, modified by our approach
based on different prediction models and sets of features over
all our A/B experiments. We see that the best variance re-
duction method, i.e., the one based on DT@All, has the
best sensitivity improvement: the corresponding OAC out-

Table 3: Comparison of feature sets and models in
terms of the success sensitivity rate (with α = 0.05)
over 161 A/B tests.

The source metric: 12 (7.45%)

Feature set \ Model Linear Regression Decision Trees

Total 17 (10.55%) 18 (11.18%)

Total ∪ TS 22 (13.66%) 21 (13.04%)

Total ∪ TS ∪ CT 19 (11.80%) 24 (14.91%)

All 20 (12.42%) 24 (14.91%)

performs the OAC of the source metric by increasing the
success sensitivity rate twice and the one of the OAC with
LR@All (baseline VR method) by 20% (the same improve-
ment is achieved by DT@All \TrTS).

6.3 Other metrics
In this subsection, we report the results of applying our

best variance reduction method (i.e., the one based on
DT@All) to the absence time metric ATpS, the other pop-
ular engagement metric of user loyalty [12] (see its definition
in Sec. 4). We also apply two ways of filtering out users. In
the first filter (s-filter), a user with only one session during
the experiment period is removed from the user sample U
(as in [11]). The second filter (t-filter) removes any user,
who has a browser cookie created later than 24 hours be-
fore the experiment start (i.e., the cookie is very “young”).
These filters are expected to improve the sensitivity of the
source metric, since the removed users are believed to be
less affected by the treatment effect.

We report the variance reduction rates κ and the suc-
cess sensitivity rates in Table 4. The percent of variance
reduction is reported relative to the source metric without
any user filter. Thus, we are able to understand the cu-
mulative variance reduction rate κc resulted from applying
a user filter and the variance reduction technique together:

κc = κ(X,
4

Xf ) = κ(X,Xf ) · κ(Xf ,
4

Xf ), where Xf is the
source metric X over filtered users. First, the results for the
number of sessions S and for the absence time ATpS are
similar. Second, the best cumulative variance reduction rate
is demonstrated by our technique without any filter, while
the best κ is demonstrated for the metrics with the t-filter.
Note that the increase in variance is expected when we ap-
ply the filters, since the removed users have similar or even
identical behavior. The user filters really improve the sen-
sitivity of the source metric X, but their combination with
the variance reduction technique is not better than the vari-
ance reduction technique applied solely. Thus, we conclude
that our technique based on decision trees and all available
features noticeably reduces the variance of all engagement
metrics of user loyalty (from 62.66% to 58.48% depending
on applied filters) and improves their sensitivity up to twice.

7. CONCLUSIONS AND FUTURE WORK
In our work, we focused on the problem of variance reduc-

tion for engagement metrics of user loyalty that are widely
used in A/B testing of web services. We developed a gen-
eral framework that is based on machine learning techniques,
that allowed us, on the one hand, to perform a deep study of
existing approaches used in randomized experiments in on-
line and offline studies (like clinical trials), and, on the other
hand, to propose a new class of methods based on ensembles
of decision trees, that, to the best of our knowledge, have



Table 4: Comparison of source metrics X and their

modifications
4

X (based on DT@All) in terms of the
average VR rate κ (relative improvement w.r.t. non-
filtered X) and the success sensitivity rate (with α =
0.05) over 161 A/B tests.

Variance reduction Success sensitivity rate

Metric X = rate κ(X,
4

X) for X for
4

X

S 0.3734 (−62.66%) 12 (7.45%) 24 (14.91%)

S (s-filter) 0.4152 (−32.07%) 16 (9.94%) 21 (13.04%)

S (t-filter) 0.3668 (−33.42%) 15 (9.32%) 21 (13.04%)

ATpS 0.3735 (−62.65%) 12 (7.45%) 23 (14.29%)

ATpS (s-filter) 0.4152 (−32.07%) 16 (9.94%) 22 (13.66%)

ATpS (t-filter) 0.3668 (−33.42%) 15 (9.32%) 20 (12.42%)

not been applied earlier to problems of variance reduction.
We experimented with a very large and diverse set of 161
real large-scale A/B experiments. First, we have shown that
our novel variance reduction technique (which is based on
decision trees) outperformed state-of-the-art ones. Second,
this technique demonstrated 63% average variance reduction
(5.1% improvement over the best state-of-the-art technique),
which is equivalent to 63% overall (5.1% relative) saved user
traffic utilized in online evaluation. Finally, we also applied
the method to sensitivity improvement that resulted in the
detection of the treatment effect in 2 times more A/B tests
than with non-modified user engagement metrics and +20%
more A/B tests than the one modified by the state-of-the-art
VR technique. Hence, our study produces essential results
on effectiveness of different variance reduction techniques
applied to user engagement metrics that coincide with the
emerging needs of modern Internet companies to run more
controlled experiments on a limited number of their users.

Future work. First, we can improve the prediction qual-
ity by more complicated models and richer feature sets for
further variance reduction and sensitivity improvement. Sec-
ond, one can further study matching estimators to achieve
better sensitivity.
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