
Robust Extreme Multi-label Learning

Chang Xu∗
xuchang@pku.edu.cn

Dacheng Tao†
Dacheng.Tao@uts.edu.au

Chao Xu∗
xuchao@cis.pku.edu.cn

Key Laboratory of Machine Perception (Ministry of Education), Peking University∗, Beijing, China
Centre for Quantum Computation and Intelligent Systems, University of Technology†, Sydney

ABSTRACT
Tail labels in the multi-label learning problem undermine
the low-rank assumption. Nevertheless, this problem has
rarely been investigated. In addition to using the low-rank
structure to depict label correlations, this paper explores
and exploits an additional sparse component to handle tail
labels behaving as outliers, in order to make the classical
low-rank principle in multi-label learning valid. The divide-
and-conquer optimization technique is employed to increase
the scalability of the proposed algorithm while theoretically
guaranteeing its performance. A theoretical analysis of the
generalizability of the proposed algorithm suggests that it
can be improved by the low-rank and sparse decomposition
given tail labels. Experimental results on real-world data
demonstrate the significance of investigating tail labels and
the effectiveness of the proposed algorithm.

CCS Concepts
•Computing methodologies → Supervised learning;

Keywords
Multi-label Learning; Robust Algorithm

1. INTRODUCTION
In contrast to conventional single-label learning, in which

each example is assigned only one label, multi-label learning
evaluates examples with multiple labels. Many real-world
applications use multi-label learning [30] including text cat-
egorization and image/video annotation [7]. The rapid evo-
lution of information techniques has fueled the emergence of
large-scale multi-label applications with huge numbers of la-
bels. For example, given over a million labels (categories) on
Wikipedia, one might wish to build a classifier to annotate
a new article or web page with a subset of the most relevant
categories. In another example, taking billions of YouTube
videos as distinct labels, a task might be to recommend a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

KDD’16 August 13–17, 2016, San Francisco, CA, USA
c© 2016 ACM. ISBN 123-4567-24-567/08/06. . . $15.00

DOI: 10.475/123 4

ranked list of labels to a single user. Hence, extreme multi-
label learning with an extremely large number of labels has
become an important research focus.

Binary relevance (BR) [23] seeks to independently train a
classifier for each label. BR is a straightforward approach
for multi-label learning, but due to prohibitive training and
prediction costs arising from large numbers of labels, this
method becomes less useful. A number of embedding-based
approaches have been proposed to overcome this extreme
multi-label learning problem that reduce the effective num-
ber of labels. The approaches assume that the label matrix
is low rank. Different techniques can be used to compress
and decompress label vectors, including compressed sensing
[14], Bloom filters [9], SVD [22], landmark labels [2, 5], and
output codes [31].

The low-rank label matrix assumption in embedding meth-
ods is violated in many real-world applications due to the
presence of tail labels occurring in a handful of data points.
Histograms of the label matrices on the wiki10, Delicious-
L and Amazon datasets are shown in Figure 1. There are
more than 104 labels which occur in at most 2 examples on
each dataset, such that they are not well approximated by
any linear low-dimensional basis. This tail label issue is fre-
quently and persistently neglected in multi-label learning.
Recently, instead of projecting label vectors into a linear
low-rank subspace, [4] addressed the tail label problem by
learning embeddings that non-linearly captured label cor-
relations by preserving the pairwise distances between la-
bel vectors. Although this provides an alternative approach
to handling tail labels, we must also ask whether low-rank
based approaches really are now redundant.

Here we revisit the classical low-rank principle in multi-
label learning and suppress the influence of tail labels. Tail
labels can be regarded as label matrix outliers, inspiring us
to decompose the label matrix into a low-rank part that de-
picts label correlations and a sparse part that captures tail
labels. Various effective embedding techniques are then ap-
plicable. To improve scalability and leverage the growing
availability of parallel computing architectures, the divide-
and-conquer approach is adopted to optimize the resulting
objective function, whose performance can be theoretically
guaranteed with high probability. Our theoretical analy-
sis shows that the proposed low-rank and sparse decompo-
sition is useful for improving the generalizability of multi-
label learning algorithms. Experiments on real-world data
demonstrate the significance of studying tail labels in multi-
label learning and the effectiveness of the proposed algo-
rithm.

100 101 102 103 104 105
100

101

102

103

104

105

106

100 101 102 103 104 105
100

101

102

103

104

(a)� (b)� (c)�

Figure 1: The number of examples in which each label is present on the (a) Wiki10 (b) Delicious-L and
(c) Amazon datasets. The horizontal axis indicates the index of label, while the vertical axis indicates the
number of associated examples.

2. RELATED WORK
Broadly speaking, existing multi-label learning algorithms

can be categorized into two groups: algorithm adaptation
and problem transformation methods. Algorithm adapta-
tion methods adapt, extend and customize an existing ma-
chine learning algorithms for the task of multi-label learning,
while problem transformation methods transform the multi-
label learning problem into one or more single-label clas-
sification or regression problems. Representative examples
include boosting [19, 25, 15], decision trees [24, 16], neural
networks [28, 10], support vector machines [12, 13] and k
nearest neighbors classifier [29, 20].

The key in multi-label learning is modeling inter-label cor-
relations and using them for label vector prediction. In many
applications such as text categorization and functional ge-
nomics, the labels are often organized in the form of a tree
or directed acyclic graph, so that label relationship can be
exploited from the knowledge resources as prior knowledge
for multi-label learning [6, 13]. In most real-world tasks,
however, prior knowledge of label relationship is often un-
available. It is thus necessary to model the label relationship
directly. For example, Sun et al. [21] proposed to employ hy-
pergraphs to exploit the higher-order relations among multi-
ple instances sharing the same label in multi-label learning.
They constructed a hyperedge for each label, and included
all instances annotated with a common label into one hyper-
edge, thus capturing their joint similarity. Zhang and Zhang
[27] used a Bayesian network to characterize the dependence
structure between multiple labels, and learned a binary clas-
sifier for each label by treating its parental labels in the de-
pendence structure as additional input features. However,
as the number of labels keeps growing, these algorithms are
usually computationally infeasible.

Embedding-based approaches are significant for handling
extreme multi-label learning problem by reducing the effec-
tive number of labels. Generally, they assume that the label
matrix is low-rank, and then project label vectors into a low-
dimensional subspace. Hence, instead of directly learning to
predict the original high-dimensional label vector of each ex-
ample, the training complexity is largely decreased by first
learning the predictor of embedded label vectors, and then
a decompression operation is employed to lift the embedded

label vectors back to the original label space.
Various compression and decompression techniques have

been exploited by existing embedding methods. Hsu et al.
[14] addressed classification problem with a large number of
labels via a three-step approach. First, random transfor-
mation is used to project the high-dimensonal label vector
into a low-dimensional space; next, a regression model is
trained to predict each dimension of the transformed label
vector; finally, for a test example, its predicted label vector
in the low-dimensional space is projected back to the origi-
nal label space. Considering the drawback of random trans-
formation in [14], Tai and Lin [22] proposed the principal
label space transformation, which uses principal component
analysis (PCA) to accomplish the compression operation on
the high-dimensional label vector. Since PCA in the label
space only focuses on minimizing the encoding error between
high-dimensional feature vectors and their low-dimensional
representations [22], Chen and Lin [8] proposed conditional
principal label space transformation, which improves [22]
by simultaneously considering the label encoding error and
training error in the low-dimensional label space. Based
on canonical correlation analysis (CCA), Zhang and Schnei-
der [31] also took both feature matrix and label matrix into
consideration. After that, a maximum margin formulation
was developed to learn an output coding, which is predic-
tive and discriminative so that the codings for different label
vectors are easy to predict and significantly different from
each other. Instead of using label transformation, Balasub-
ramanian and Lebanon [2] proposed to train only a small
subset of the labels, which come from the original labels, so
that the difficulty of the learning problems can be decreased.
Supposing that the non-selected labels are to be faithfully
and easily constructed from the selected ones, a group-sparse
learning problem is investigated to discover the optimal la-
bel subset [2]. However, the structured sparsity optimiza-
tion problem in [2] is computationally expensive, especially
when there are a lot of labels to select from. Bi and Kwok [5]
alleviated this problem by proposing an efficient label selec-
tion method based on randomized sampling. Following the
assumption in [2], Bi and Kwok [5] designed the sampling
probability of each label using its leverage score in the best
rank-k subspaces of the label matrix.

Recently, Yu et al. [26] modeled multi-label classifica-
tion as a general empirical risk minimization (ERM) prob-
lem with a low-rank constraint, which generalizes both la-
bel and feature dimensionality reduction. Given squared-
L2 loss, LEML algorithm in [26] has a closed form solu-
tion, and can be reduced to the conditional principal label
space transformation algorithm in [8]. Various loss func-
tions and regularizers are applicable in this ERM frame-
work for preventing overfitting and increasing scalability.
However, as suggested by [4], the low-rank assumption in
embedding-based approaches is easily violated by tail labels
in real-world datasets with a large number of labels. In-
stead of globally projecting high-dimensional label vectors
into a low-rank subspace, SLEEC algorithm in [4] learns
low-dimensional embedding which non-linearly capture la-
bel correlations by preserving the pairwise distances between
only the closet label vectors. Regressors are then trained to
predict the embedded label vector for each example. Dur-
ing prediction, rather than using a decomposition matrix,
SLEEC uses a k-nearest neighbor (kNN) classifier in the em-
bedding space, which leverages the fact that nearest neigh-
bors have been persevered during training.

3. PROBLEM FORMULATION
Given a training data set {(x1, y1), · · · , (xn, yn)}, where

xi ∈ Rd is the feature vector of the i-th example, and
yi ∈ {−1, 1}L is the corresponding label vector, the fea-
ture matrix is denoted as X = [x1; · · · ;xn] ∈ Rn×d and the
label matrix is Y = [y1; · · · ; yn] ∈ {−1, 1}n×L. If Yij = 1,
example xi will have label-j; otherwise, there is no label-i for
example xj . Multi-label learning aims to learn a hypothesis
f : Rd → {−1, 1}L that accurately predicts the label vector
for a given example.

There are a large number of labels in the extreme multi-
label learning setting. Tail labels, which only occur with
several examples, cannot be ignored, and a number of rows
in the label matrix Y will have plenty of −1-valued entries
while occasionally being dotted with several 1-valued entries.
Due to the existence of these rows, the classical low-rank
assumption on the label matrix is violated. We attempt to
modernize the low-rank principle by carefully formulating
the tail labels in the extreme multi-label learning problem.

3.1 Robust Extreme Multi-label Learning
One reasonable approach to interpret the label matrix in

multi-label learning is to assume that the label matrix can be
well approximated using a low-dimensional subspace. This
assumption has been well justified in many practical situa-
tions. A general model can be written as

min
Ŷ ,W

‖Y − Ŷ ‖2F + λ`(f(X,W), Ŷ)

s.t. rank(Ŷ) ≤ k.
(1)

where Ŷ is the low-rank approximation of Y , and loss func-
tion `(·) is employed to penalize the loss generated by a
multi-label predictor parameterized by W .

Problem (1) has been studied for decades, and various

techniques have been used to formulate the low-rank Ŷ , the
predictor f(·) and the loss function `(·). However, as men-
tioned above, tail labels damage the low-rank assumption

over Y and render the estimated Ŷ arbitrarily far from the
true Y ; the learned multi-label predictor is, therefore, seri-

ously influenced as a result. A method that can extract the
low-rank components from Y even in the presence of tail
labels would be desirable.

To achieve this, we treat tail labels as outliers and decom-
pose the label matrix to

Y = ŶL + ŶS , (2)

where ŶL is of low rank and depict label correlations and

ŶS is the sparse component capturing the influence of tail
labels. These two components can be obtained by solving
the following objective:

min
ŶL,ŶS

‖Y − ŶL − ŶS‖2F

s.t. rank(ŶL) ≤ k, card(ŶS) ≤ s.
(3)

Given the low rank and sparse components ŶL and ŶS , we
expect to learn regression models that predict them using

the input features. That is, we require that ŶL ≈ WX and

ŶS ≈ HX, where W,H ∈ Rd×L. Hence, problem (3) can be
reformulated as:

min
W,H
‖Y −XW −XH‖2F

s.t. rank(XW) ≤ k, card(XH) ≤ s.
(4)

Since the rank and card constraints tend to increase the opti-
mization complexity, we employ two popular matrix factor-
ization heuristics (to encourage low-rankness) and L1-norm
minimization (to encourage sparsity) to relax the constraints
in problem (4), such that

min
U,V,H

‖Y −XUV −XH‖2F + λ1‖H‖2F

+ λ2(‖U‖2F + ‖V ‖2F) + λ3‖XH‖1,
(5)

where {λ1, λ2, λ3} are positive constants, W is supposed to
have W = UV given U ∈ Rd×k and V ∈ Rk×L, and an
L2-regularization has been included for H. It is expected
that by solving problem (5), we can obtain a low-rank func-
tion (i.e., W = UV) and a sparse function (i.e., H), which
together are used for multi-label prediction.

4. OPTIMIZATION
In this section, we first present the basic optimization

method for problem (5) and then adopt the divide-and-
conquer strategy to develop an optimization method appli-
cable to extreme multi-label learning.

4.1 Basic Optimization Method
Problem (5) can be solved by alternatively solving the

following three subproblems until convergence:

V = arg min
V
‖Y −XUV −XH‖2F + λ2‖V ‖2F (6a)

U = arg min
U
‖Y −XUV −XH‖2F + λ2‖U‖2F (6b)

H = arg min
H
‖Y −XUV −XH‖2F + λ1‖H‖2F (6c)

+ λ3‖XH‖1.

In the following, we illustrate the optimization of these three
subproblems respectively.

4.1.1 Solving V

In problem (6a), updating V is simple since each column
vj of V can be independently updated:

min
vj

n∑
i=1

‖Yij − xiUvj − (XH)ij‖2 + λ2‖vj‖22, (7)

which is easy to solve in a closed form as the dimension of
vj (i.e. k) is generally small. Setting the gradient of Eq. (7)
w.r.t. vj to zero, the optimal v∗j corresponding to the j-th
label can be obtained as

v∗j =

[n∑
i=1

(xiU)TxiU +λ2I

]−1[n∑
i=1

(
Yij− (XH)ij

)
(xiU)T

]
4.1.2 Solving U

Problem (6b) is equivalent to

min
u

n∑
i=1

L∑
j=1

‖Yij − uT X̃ij − (XH)ij‖2 + λ2‖u‖2, (8)

where u ∈ Rdk denotes vec(U), and X̃ij = vec(xivj). There
is a closed form solution for this problem,

u∗ =

[n∑
i=1

L∑
j=1

X̃ij(X̃ij)
T+λ2I

]−1[n∑
i=1

L∑
j=1

(
Yij−(XH)ij

)
X̃ij

]
However, it is inefficient to compute the closed form solu-
tion for the above problem when d is large due to the huge
computational cost of inverting a dk × dk matrix. Instead,
it is more appropriate to employ efficient gradient descent
methods (e.g. conjugate gradient descent) for optimization.

4.1.3 Solving H

In problem (6c), given Ỹ = Y − XUV , each column Hj
can be independently solved,

min
Hj

n∑
i=1

‖Ỹij − xiHj‖2F + λ1‖Hj‖2F + λ3‖XHj‖1. (9)

The L1 norm in problem (9) involves both Hj and X, which
makes the problem non-smooth and disallows the standard
prox function-based optimization methods. One way to cir-
cumvent this difficulty is by introducing an auxiliary variable
Zj = XHj and transforming problem (9) into

min
Hj ,Zj ,µ

n∑
i=1

‖Ỹij − xiHj‖2F + λ1‖Hj‖2F + λ3‖Zj‖1

+ ρ‖XHj − Zj + µ‖2F ,

(10)

where ρ > 0 is the penalty parameter, and µ is the scaled
dual variable.

Fixing Hj and µ, problem (10) is reduced to

min
Zj

‖XHj − Zj + µ‖2F +
λ3

ρ
‖Zj‖1. (11)

The optimal Z∗j can be obtained via soft thresholding oper-
ation [11],

Z∗j = soft(XHj + µ,
λ3

ρ
), (12)

where

soft(a, b) = sign(a) max(|a| − b, 0). (13)

Algorithm 1 Robust Extreme Multi-label Learning

Input: X, Y , t ≥ 1
For i = 1, · · · , t do In Parallel

Sample (Y)i ⊆ Y
repeat

Solve (V̂)i from Problem (6a)

Solve (Û)i from Problem (6b)

Solve (Ĥ)i from Problem (6c)
until Convergence

(Ŵ)i = (Û)i(V̂)i
End
ColumnProjection ([(Ŵ)1, · · · , (Ŵ)t], (Ŵ)1)

Fixing Zj and µ, Hj can be solved from the following objec-
tive function:

min
Hj

n∑
i=1

‖Ỹij−xiHj‖2F+λ1‖Hj‖2F+ρ‖XHj−Zj+µ‖2F . (14)

The gradient w.r.t. Hj is calculated as

∇Hj J = 2
(n∑
i=1

xTi xi + λ1I + ρXTX
)
Hj

− 2
(n∑
i=1

xTi Ỹij + ρXT (Zj − µ)
)
.

(15)

By setting Eq. (15) to zero, Hj can be easily solved out in
a closed form. On the other hand, if the dimension of Hj is
great, cheap gradient descent optimization method can be
applied. µ can be updated via

µ← µ+XH − Z. (16)

Through alternatively updating Hj , Zj and µ, the optimal
Hj for problem (9) can be achieved.

4.2 Divide-and-Conquer Optimization
The divide-and-conquer strategy can be employed to in-

crease the algorithm’s capability for handling extremely large
numbers of labels. The original optimization problem is first
divided into cheaper sub-problems that can be efficiently
solved in parallel. The solutions to these subproblems can
then be combined to achieve the final solution. The whole
optimization procedure is summarized in Algorithm 1.

Divide Step. Given the label matrix Y ∈ {−1, 1}n×L,
we randomly partition it into t m-column sub-matrices {(Y)i}ti=1,
where we suppose L = tm and each (Yi) ∈ {−1, 1}n×m.
Hence, the original problem is divided into t sub-problems
regarding {(Y)1, · · · , (Y)t}, respectively. The basic opti-
mization method described in Section 4.1 can be adopted
to solve these sub-problems in parallel, which outputs the

solutions
{(

(Ŵ)1, (Ĥ)1
)
, · · · ,

(
(Ŵ)t, (Ĥ)t

)}
.

Conquer Step. This conquer step exploits column pro-
jection to integrate the solutions of sub-problem solutions.
The final approximation W to problem (5) can thus be

obtained by projecting [(Ŵ)1, · · · , (Ŵ)t] onto the column

space of (Ŵ)1. After obtaining Ŵ , we can then launch the

optimization over each each column of Ĥ in parallel to obtain
the sparse component of the resulting multi-label predictor.

5. THEORETICAL ANALYSIS

In this section, we prove the upper bounds on the estima-
tion error of the basic and divide-and-conquer optimization
methods, respectively. The generalizability of our learning
model is also analyzed.

5.1 Estimation Error
Given a feature matrix X ∈ Rn×d and the correspond-

ing label matrix Y ∈ {−1, 1}n×L for n training points of L
labels, we suppose that

Y = XW0 + YS + ε, (17)

where W0 ∈ Rd×L is the ground truth weight, YS is the
sparse component to formulate the influence of tail labels,
and ε is a data-independent noise term. Given this training
data, we aim to estimate W0 by performing empirical risk
minimization:

Ŵ = arg min
W

= ‖Ỹ −XW‖2F + λ‖W‖∗, (18)

where Ỹ = Y − YS . Note that although the method in
Eq. (4) uses a regularized rank-constrained formulation, we
analyze the trace norm-regularized version without the rank
constraint for simplicity. Since the class of rank-constrained
matrices is smaller than the class of trace norm-constrained
matrices, we can in fact expect better theoretical results
here.

We generically denote the estimator for ΣXX by XTX,

and the estimator for ΣXỸ by XT Ỹ . We require ΣXX to be

positive semidefinite. Thus, the estimator for Ŵ naturally
becomes,

Ŵ = arg min
W
〈W,ΣXXW 〉 − 2〈ΣXỸ ,W 〉+ λ‖W‖∗. (19)

We use the following theorem to show that Ŵ solved in Eq.
(19) is an approximated estimation of the true W0.

Theorem 1. Suppose the smallest eigenvalue of ΣXX is
bounded by σmin(ΣXX) ≥ σ > 0. The estimation error
satisfies

‖Ŵ −W0‖F ≤
1

σ

(
2‖ΣXỸ − ΣXXW0‖∗ − λ

)
. (20)

Proof. Let ∆ = Ŵ −W0. Considering the optimality of

Ŵ for problem (19), we have

〈W0 + ∆,ΣXX(W0 + ∆)〉 − 2〈ΣXỸ ,W0 + ∆〉+ λ‖W0 + ∆‖∗
≤〈W0,ΣXXW0〉 − 2〈ΣXỸ ,W0〉+ λ‖W0‖∗,

which can be rearranged to

〈∆,ΣXX∆〉 ≤ 2〈ΣXY − ΣXXW0,∆〉 − λ‖∆‖∗. (21)

Since the smallest eigenvalue of ΣXX is bounded, we have

〈∆,ΣXX∆〉 ≥ σ‖∆‖2F . (22)

Given ‖∆‖∗ ≥ ‖∆‖F , the right hand side of Eq. (21) can be
upper-bounded by

2〈ΣXỸ−ΣXXW0,∆〉 − λ‖∆‖∗
≤2‖ΣXỸ − ΣXXW0‖∗‖∆‖F − λ‖∆‖F .

(23)

Combining all the above results, we get

σ‖∆‖2F ≤ 2‖ΣXỸ − ΣXXW0‖∗‖∆‖F − λ‖∆‖F . (24)

The result then follows.

According to Theorem 1, the estimation error bound de-
pends on ΣXỸ = XT (Y − YS), and thus YS can be inter-
preted as the perturbations of ΣXỸ . Since the magnitude
of YS is no greater than that of Y , the tail labels will not
overwhelm the estimation over W .

We next analyze the estimation error in the divide-and-
conquer optimization method. Suppose the compact singu-
lar value decomposition (SVD) of W is UWΣV TW , where Σ is
diagonal and contains k non-zero singular values of W , and
UW ∈ Rd×k and VW ∈ RL×k are the corresponding left and
right singular vectors of W . We assume the true weight W0

is (µ, k)-coherent, whose definition is given as below,

Definition 1. Given µ0(VW) = d
k

max1≤i≤d ‖(VW)i‖2 and

µ1(W) =
√

dL
k

maxi,j |eTi UWV TW ej |, for any µ > 0, if

rank(W) = k, max(µ0(VW), µ0(VW)) ≤ µ and µ1(W) ≤ µ,
we call W is (µ, k)-coherent.

We first invoke a lemma from [17] to show that column
projection can produce an approximation that is nearly as
good as a given rank-k target by sampling a number of
columns proportional to the coherence.

Lemma 1. [17]. Given a matrix W ∈ Rd×L and a rank-k
approximation A ∈ Rd×L, choose m ≥ ckµ log(L) log(1/δ)/ε2,

where c is a fixed positive constant, and let W̃ ∈ Rd×m be
a matrix of m columns of W sampled uniformly without re-
placement. Then, with probability at least 1− δ,

‖W − W̃ proj‖F ≤ (1 + ε)‖W −A‖F , (25)

where W̃ proj ∈ Rd×L is derived by projecting W̃ onto the
space of W .

Recall that the true weight W0 has been partitioned into
t sub-matrices {(W0)1, · · · , (W0)t} that are solved by opti-
mizing distinct sub-problems in parallel and correspond to t

estimated sub-matrices {(Ŵ)1, · · · , (Ŵ)t}. We employ col-
umn projection to derive the approximation of W0 with the

help of Ŵ , and denote it as Ŵ proj . The difference between

W0 and Ŵ proj can be bounded by the following theorem.

Theorem 2. For m ≥ ckµ log(L) log(1/δ)/ε2, where c is
a fixed positive constant. The original problem has been di-
vided into t sub-problems. If a basic optimization method
yields the estimation error satisfying Theorem 1 for each
sub-problem, then with probability at least 1 − δ, the esti-
mation error in the divide-and-conquer method is bounded
by

‖W0 − Ŵ proj‖F ≤
2 + ε

σ

t∑
i=1

(
2‖ΣX(Ỹ)i

−ΣXX(W0)i‖∗ − λ
)

Proof. According to Lemma 1, with probability at least
1− δ, the following inequality holds:

‖Ŵ − Ŵ proj‖F ≤ (1 + ε)‖Ŵ −W0‖F . (26)

By adding ‖Ŵ −W0‖F to both sides of the above inequality,
we get

(2 + ε)‖Ŵ −W0‖F ≥ ‖Ŵ − Ŵ proj‖F + ‖Ŵ −W0‖F
≥ ‖W0 − Ŵ proj‖F ,

which implies that

‖W0−Ŵ proj‖F ≤ (2 + ε)‖Ŵ −W0‖F

≤ (2 + ε)

t∑
i=1

‖(W0)i − (Ŵ)i‖F

≤ 2 + ε

σ

t∑
i=1

(
2‖ΣX(Ỹ)i

− ΣXX(W0)i‖∗ − λ
)
.

This ends the proof.

Compared to the estimation error bound derived by apply-
ing a basic optimization method to estimate W0 in Theorem
1, Theorem 2 exhibits an approximate recovery error with
appropriate probability. It is instructive to note that the
divide-and-conquer approach provides a controlled increase
in error and a controlled decrease in the probability of suc-
cess. Users can, therefore, adjust the optimization speed
and accuracy.

5.2 Generalization Error
Given n multi-label points sampled i.i.d. from the dis-

tribution Q = X × Y, the proposed model aims to learn

(Ŵ , Ĥ) ∈ F =W ×H by performing ERM as follows:

inf
rank(W)≤k
card(XH)≤s

L̂(W,H) =
1

n

n∑
i=1

`(yi, f(xi,W,H)), (27)

where L̂(W,H) is the empirical risk of the predictor (W,H).

Our goal would be to show that (Ŵ , Ĥ) has good general-
ization properties, that is:

L(Ŵ , Ĥ) ≤ inf
rank(W)≤k
card(XH)≤s

L̂(W,H) + ε, (28)

where L(W,H) = E(x,y)[`(y, f(x,W,H))] is the population
risk of the predictor.

The Rademacher complexity is an effective way to mea-
sure the richness (complexity) of the function class F , based
on which the generalization error bound of the learning al-
gorithm can easily be obtained using standard approaches
[3].

Definition 2. Given a sample S = {x1, · · · , xn} ∈ Xn
and a real-valued function class F defined on a space X , the
empirical Rademacher complexity of F is defined as

R̂n(F) = Eσ

[
sup
f∈F

∣∣∣∣∣ 2n
n∑
j=1

σjf(xj)

∣∣∣∣∣x1, · · · , xn
]
,

where σ = (σ1, · · · , σn) are independent uniform {±1}-valued
Rademacher random variables. The Rademacher complexity
of F is

Rn(F) = Es(R̂n(F)) = Ex,σ

[
sup
f∈F

∣∣∣∣∣ 2n
n∑
j=1

σjf(xj)

∣∣∣∣∣
]
.

The Rademacher complexity of the proposed multi-label
learning algorithm can thus be written as:

Rn(F) =
2

n
Ex,σ

[
sup

(W,H)∈F

n∑
i=1

σi

L∑
j=1

xi(wj + hj)

]
,

where wj and hj correspond the j-th columns of W and
H, respectively, and together determine the predictor for

the j-th label. We denote x̃ as the weighted summarization∑n
i=1 σixi. L copies of x̃ are then stacked into X̃. Hence, the

multi-label Rademacher complexity can be simply written as

Rn(F) =
2

n
Ex,σ

[
sup

(W,H)∈F
〈W +H, X̃〉

]
, (29)

whose upper bound can be revealed by the following theo-
rem.

Theorem 3. The proposed algorithm learns W and H
over n training points with L labels i.i.d. sampled from
distribution Q = X × Y. For any data point, ‖x‖2 ≤ Λ.
The learning algorithm encourages that rank(W) ≤ k and
‖XH‖1 ≤ Ω. ‖W‖F is assumed to be upper bounded by Θ.
Then, the Rademacher complexity of F is

Rn(F) ≤ 2

√
nkLΘΛ + L3/2Ω

n
. (30)

Proof. According to Eq. (29), we have

Rn(F) =
2

n
Ex,σ sup

(W,H)∈F

[
〈W +H, X̃〉

]
=

2

n
Ex,σ sup

(W,H)∈F

[
〈W, X̃〉+ 〈H, X̃〉

]
≤ 2

n
Ex,σ sup

(W,H)∈F

[
‖W‖∗‖X̃‖F + ‖X̃H‖∗

]
≤ 2

n
Ex,σ sup

(W,H)∈F

[√
k‖W‖F ‖X̃‖F +

√
L‖X̃H‖1

]
.

Then the following bounds can be easily obtained,

Ex,σ‖X̃‖2F = Ex,σL‖x̃‖22 = Ex,σL[

n∑
i=1

σixi]
2
2 ≤ nLΛ2,

and

Ex,σ‖X̃H‖1 ≤ ExL‖XH‖1 ≤ LΩ.

This proves

Rn(F) ≤ 2

√
nkLΘΛ + L3/2Ω

n
. (31)

To make conclusions of Theorem 3, consider a typical algo-
rithm that neglects tail labels and attempts to minimize the

trace norm of W
′

= W+H for multi-label learning and with
corresponding Rademacher complexity ofO(

√
rank(W ′)/n).

As shown above, tail labels will significantly violate the low-

rank assumption on W
′
, and thus the large rank(W

′
) will

lead to a greater Rademacher complexity. In contrast, the
bound revealed in Theorem 3 is composed of two compo-
nents corresponding to the low rank W and sparse XH,
respectively. By separating the influence of tail labels, the
rank ofW (i.e., k) will be smaller. Although tail labels might
influence multi-label learning, its significance on the bound
can be dramatically decreased by constraining the sparsity
of XH (i.e. ‖XH‖1 ≤ Ω). Hence, decomposing the multi-
label model into low-rank and sparse parts to handle tail
labels is helpful for decreasing the Rademacher complexity
of the function class, which in turn improves the generaliza-
tion error bound of the algorithm.

Table 1: Statistics of the datasets used in experiments.

Dataset #training #test #features #labels #card-label #card-feature

Bibtex 4,880 2,515 1,836 159 2.40 68.74
Delicious-S 12, 920 3,185 500 983 19.03 18.17
Mediamill 30, 993 12,914 120 101 4.38 120.00
Wiki10 14, 146 6,616 101,938 30,938 18.64 673.45
Delicious-L 196,606 100,095 782,585 205,443 75.54 301.17
Amazon 490,449 153,025 135,909 670,091 5.45 75.68

Pr
ec
is
io
n@
1

72

74

76

78

80

82

84

86
REML
SLEEC
LEML
FastXML
LPSR

Pr
ec
is
io
n@
3

58

60

62

64

66

68

70

72

74
REML
SLEEC
LEML
FastXML
LPSR

Pr
ec
is
io
n@
5

48

50

52

54

56

58

60

62

64
REML
SLEEC
LEML
FastXML
LPSR

nD
C
G
@
1

72
74
76
78
80
82
84
86
88 REML

SLEEC
LEML
FastXML
LPSR

nD
C
G
@
3

60
62
64
66
68
70
72
74
76
78

REML
SLEEC
LEML
FastXML
LPSR

nD
C
G
@
5

54
56
58
60
62
64
66
68
70

REML
SLEEC
LEML
FastXML
LPSR

Figure 2: Top k precision and nDCG@k of multi-label learning algorithms on the Wiki10 dataset.

nD
C
G
@
5

15

20

25

30

35

40

45

REML
SLEEC
LEML
FastXML
LPSR

Pr
ec
is
io
n@
1

15

20

25

30

35

40

45

50
REML
SLEEC
LEML
FastXML
LPSR

Pr
ec
is
io
n@
3

15

20

25

30

35

40

45
REML
SLEEC
LEML
FastXML
LPSR

Pr
ec
is
io
n@
5

10

15

20

25

30

35

40
REML
SLEEC
LEML
FastXML
LPSR

nD
C
G
@
1

15

20

25

30

35

40

45

50
REML
SLEEC
LEML
FastXML
LPSR

nD
C
G
@
3

15

20

25

30

35

40

45

REML
SLEEC
LEML
FastXML
LPSR

Figure 3: Top k precision and nDCG@k of multi-label learning algorithms on the Delicious-L dataset.

Pr
ec
is
io
n@
1

10

20

30

40
REML
SLEEC
LEML
FastXML
LPSR

Pr
ec
is
io
n@
3

10

20

30

40
REML
SLEEC
LEML
FastXML
LPSR

Pr
ec
is
io
n@
5

10

20

30

40 REML
SLEEC
LEML
FastXML
LPSR

nD
C
G
@
1

10

20

30

40
REML
SLEEC
LEML
FastXML
LPSR

nD
C
G
@
3

10

20

30

40
REML
SLEEC
LEML
FastXML
LPSR

nD
C
G
@
5

10

20

30

40 REML
SLEEC
LEML
FastXML
LPSR

Figure 4: Top k precision and nDCG@k of multi-label learning algorithms on the Amazon dataset.

6. EXPERIMENTS
In this section, we evaluate the proposed algorithm on six

benchmark multi-label datasets: Bibtex, Delicious-S, Medi-
amill, Wiki10, Delicious-L and Amazon. All these datasets
were provided by [4], and have already been pre-separated
into training and test sets. A summary of the statics of
datasets is shown in Table 1. #training is the number of
training examples; #test is the number of test examples;
#features is the number of features; #labels is the number
of labels; #card-label is the average number of positive la-
bels per example; #card-feature is the average number of
nonzero features per example. The first three datasets with
less than 1,000 labels are regarded as small datasets, while
the last three are large datasets. We set the embedding di-
mension in REML algorithm as 0.8L for the small datasets,
and 200 for the large datasets. Since the Delicious-L and
Amazon datasets are rather large, in optimizing REML we
divided the original problems into 2 and 4 subproblems re-
spectively using the divide-and-conquer strategy. For the
other datasets, we directly solve REML using the basic op-
timization method.

In experiments, we compared our proposed Robust Ex-
treme Multi-label Learning (REML) algorithm with LEML
[26], which is the state-of-the-art label embedding method

based on the low-rank assumption over label matrix, and
SLEEC [4], which is a recently developed method using
the neighborhood embedding technique to handle tail la-
bels. Other representative multi-label learning algorithms,
such as CS [14], CPLST [8], ML-CSSP [5] and 1-vs-All [1],
which are only applicable for small datasets, are included in
comparison experiments as well.

We used two metrics to evaluate the multi-label classifi-
cation performance in the experiments, both of which have
been widely used in the fields of multi-label learning and
ranking. Precision at k measures the fraction of true positive
predictions in the top k scoring labels, given the predicted
score vector ŷ ∈ RL. nDCG at k measures the usefulness, or
gain, of a label based on its position in the predicted label
list. We refer readers to [18] for more detailed information.

6.1 Results on Large Datasets
We compare the classification performance of the pro-

posed REML algorithm with those of leading methods on
three large datasets: Wiki10, Delicious-L and Amazon. The
classification results measured in Precision@k and nDCG@k
are presented in Figures 2-4. It can be seen that REML
stably performs better than LEML on these large datasets.
For example, REML improves over LEML by as much as

Pr
ec
isi
on
@
1

30

40

50

60

70

REML
SLEEC
LEML
WSABIE
CPLST
CS
ML-CSSP
LPSR
OneVsALL
KNN

Pr
ec
isi
on
@
1

30

40

50

60

70

REML
SLEEC
LEML
WSABIE
CPLST
CS
ML-CSSP
LPSR
OneVsALL
KNN

Pr
ec
isi
on
@
1

30

40

50

60

70

REML
SLEEC
LEML
WSABIE
CPLST
CS
ML-CSSP
LPSR
OneVsALL
KNN

Pr
ec
isi
on
@
1

30

40

50

60

70

REML
SLEEC
LEML
WSABIE
CPLST
CS
ML-CSSP
LPSR
OneVsALL
KNN

Pr
ec
isi
on
@
1

30

40

50

60

70

REML
SLEEC
LEML
WSABIE
CPLST
CS
ML-CSSP
LPSR
OneVsALL
KNN

Figure 5: Top k precision of multi-label learning algorithms on the Bibtex dataset.

Pr
ec
isi
on
@
1

30

40

50

60

70

REML
SLEEC
LEML
WSABIE
CPLST
CS
ML-CSSP
LPSR
OneVsALL
KNN

Pr
ec
isi
on
@
1

30

40

50

60

70

REML
SLEEC
LEML
WSABIE
CPLST
CS
ML-CSSP
LPSR
OneVsALL
KNN

Pr
ec
isi
on
@
1

30

40

50

60

70

REML
SLEEC
LEML
WSABIE
CPLST
CS
ML-CSSP
LPSR
OneVsALL
KNN

Pr
ec
isi
on
@
1

30

40

50

60

70

REML
SLEEC
LEML
WSABIE
CPLST
CS
ML-CSSP
LPSR
OneVsALL
KNN

Pr
ec
isi
on
@
1

30

40

50

60

70

REML
SLEEC
LEML
WSABIE
CPLST
CS
ML-CSSP
LPSR
OneVsALL
KNN

Figure 6: Top k precision of multi-label learning algorithms on the Delicious-S dataset.

Pr
ec
isi
on
@
1

30

40

50

60

70

REML
SLEEC
LEML
WSABIE
CPLST
CS
ML-CSSP
LPSR
OneVsALL
KNN

Pr
ec
isi
on
@
1

30

40

50

60

70

REML
SLEEC
LEML
WSABIE
CPLST
CS
ML-CSSP
LPSR
OneVsALL
KNN

Pr
ec
isi
on
@
1

30

40

50

60

70

REML
SLEEC
LEML
WSABIE
CPLST
CS
ML-CSSP
LPSR
OneVsALL
KNN

Pr
ec
isi
on
@
1

30

40

50

60

70

REML
SLEEC
LEML
WSABIE
CPLST
CS
ML-CSSP
LPSR
OneVsALL
KNN

Pr
ec
isi
on
@
1

30

40

50

60

70

REML
SLEEC
LEML
WSABIE
CPLST
CS
ML-CSSP
LPSR
OneVsALL
KNN

Pr
ec
isi
on
@
1

30

40

50

60

70

REML
SLEEC
LEML
WSABIE
CPLST
CS
ML-CSSP
LPSR
OneVsALL
KNN

Pr
ec
isi
on
@
1

30

40

50

60

70

REML
SLEEC
LEML
WSABIE
CPLST
CS
ML-CSSP
LPSR
OneVsALL
KNN

Pr
ec
isi
on
@
1

30

40

50

60

70

REML
SLEEC
LEML
WSABIE
CPLST
CS
ML-CSSP
LPSR
OneVsALL
KNN

Pr
ec
isi
on
@
1

30

40

50

60

70

REML
SLEEC
LEML
WSABIE
CPLST
CS
ML-CSSP
LPSR
OneVsALL
KNN

Pr
ec
isi
on
@
1

30

40

50

60

70

REML
SLEEC
LEML
WSABIE
CPLST
CS
ML-CSSP
LPSR
OneVsALL
KNN

Figure 7: Top k precision of multi-label learning algorithms on the MediaMill dataset.

18% and 20% in terms of Precision@3 and nDCG@3 on the
Wiki10 dataset. This is because that the success of LEML
mainly depends on the low-rank assumption, which tends
to be violated on the large dataset with lots of tail labels
(see Figure 1). REML provides an appropriate approach
to preserve the validity of low-rank assumption by elegantly
handling the tail labels as outliers. Hence, REML is able to
achieve satisfactory classification results when faced with a
number of tail labels, which is evidenced by its comparable
performance with respect to the SLEEC method.

6.2 Results on Small Datasets

We next conduct multi-label classification over three small
datasets: Bibtex, Delicious-S, MediaMill, which can be han-
dled by more leading multi-label learning algorithms, such as
CPLST and CS. The classification results in Precision@k are
shown in Figures 5-7, while Table 2 presents the results in
nDCG@k. Since the tail label problem is not acute on these
small datasets, LEML and other comparison algorithms can
achieve fine classification results. However, LEML is inferior
to SLEEC, which uses neighborhood embedding to get rid of
the influence of tail labels. Hence, SLEEC improves LEML

Table 2: nDCG@k of multi-label learning algorithms on the Bibtex, Delicious-S, Mediamill datasets.

Bibtex Delicious-S Mediamill
Algorithm nDCG@1 nDCG@3 nDCG@5 nDCG@1 nDCG@3 nDCG@5 nDCG@1 nDCG@3 nDCG@5

KNN 57.81 52.36 54.57 64.80 60.71 57.02 82.59 75.62 72.76
OneVsAll 62.62 59.44 61.73 64.90 60.94 56.54 83.67 73.90 67.75

LPSR 62.98 57.11 58.76 64.46 60.47 56.19 83.65 74.12 69.12
ML-CSSP 56.86 52.54 54.81 63.96 59.07 54.86 83.21 72.67 65.05

CS 59.60 53.08 53.74 61.26 57.85 54.44 83.97 75.29 71.99
CPLST 61.99 57.66 59.71 65.65 61.52 58.00 83.79 74.44 70.49

WSABIE 55.03 50.26 52.33 63.67 59.47 56.37 79.86 72.51 69.31
LEML 63.10 58.84 61.06 64.96 61.80 58.42 83.09 75.23 71.96
SLEEC 64.49 59.90 62.29 67.41 62.46 59.02 86.61 80.04 77.71
REML 65.13 60.01 62.46 66.30 62.65 59.10 86.73 82.67 78.32

Table 3: Time and performance of REML with varying numbers of subproblems.

#subproblems Time (s) Precision@1 Precision@3 Precision@5 nDCG@1 nDCG@3 nDCG@5

1 3,739 86.17 74.30 64.37 88.09 78.44 69.38
2 2,190 84.07 72.70 62.92 85.26 76.52 68.94
5 1,495 82.80 71.20 62.78 83.79 75.47 66.23
8 923 78.45 69.53 58.76 81.92 72.07 64.42
10 764 76.68 67.75 56.68 80.01 70.30 63.32

by 4.8% in terms of Precision@1 on the Bibtex dataset and
7.8% in terms of Precision@3 on the MediaMill dataset.
We suggest that the performance gap between LEML and
SLEEC can be bridged by the REML algorithm, which is
able to suppress the influence of tail labels and activate the
low-rank assumption on multiple labels. On the Delicious-S
dataset, REML is the closest competitor of SLEEC, while
on the Bibtex dataset, REML takes a lead ahead of SLEEC
in terms of Precision@5. This demonstrates that the low-
rank assumption is powerful for processing multiple labels,
and its performance can be further strengthened by care-
fully investigating the tail labels as outliers in the low-rank
formulation.

6.3 Algorithm Analysis
We next perform experiments on the Wiki10 dataset, to

explore the trade-off between computation and accuracy when
using divide-and-conquer technique to optimize the proposed
REML algorithm (denoted as ‘DC-REML’). Table 3 presents
the time required to solve REML with different numbers
of subproblems (i.e., t), and the corresponding classifica-
tion results in Precision@k and nDCG@k. From this table,
we find that DC-REML performs comparably to REML for
smaller values of t, and the performance gradually degrades
for larger subproblem number, which is consistent with the
theoretical analysis in Section 5.1. Most importantly, DC-
REML have significantly sped up REML by dividing the
original problem into 5 subproblems, with an acceptable per-
formance degradation of 4% relative to REML in terms of
Precision@3. Hence, given the scalability provided by the
divide-and-conquer optimization technique, we can flexibly
manage the optimization accuracy and time cost in solving
large-scale multi-label learning problems.

7. CONCLUSION
In this paper, we study the tail labels problem in multi-

label learning, where the scarce labels associate with limited
number of examples. To prevent the damage of tail labels on

the low-rank assumption over multiple labels, we treat tail
labels as outliers and develop a robust extreme multi-label
learning algorithm. Divide-and-conquer approach applied to
optimize the resulting objective function is beneficial for im-
proving the scalability, and its advantages in balancing accu-
racy and computation have been theoretically demonstrated.
We analyze the generalization error of the proposed algo-
rithm, and suggest that it can be improved by the low-rank
and sparse decomposition given tail labels. Experimental
results on real-world datasets demonstrate the significance
of investigating tail labels and the promising performance of
the proposed algorithm.

References
[1] S. V. N. V. B. Hariharan and M. Varma. Efficient

max-margin multi-label classification with applications
to zero-shot learning. Machine Learning, 2012.

[2] K. Balasubramanian and G. Lebanon. The landmark
selection method for multiple output prediction. In
ICML, 2012.

[3] P. L. Bartlett and S. Mendelson. Rademacher and gaus-
sian complexities: Risk bounds and structural results.
The Journal of Machine Learning Research, 3:463–482,
2003.

[4] K. Bhatia, H. Jain, P. Kar, M. Varma, and P. Jain.
Sparse local embeddings for extreme multi-label classi-
fication. In Advances in Neural Information Processing
Systems, pages 730–738, 2015.

[5] W. Bi and J. Kwok. Efficient multi-label classification
with many labels. In Proceedings of the 30th Inter-
national Conference on Machine Learning (ICML-13),
pages 405–413, 2013.

[6] W. Bi and J. T. Kwok. Multi-label classification on
tree-and dag-structured hierarchies. In Proceedings of

the 28th International Conference on Machine Learning
(ICML-11), pages 17–24, 2011.

[7] G. Carneiro, A. B. Chan, P. J. Moreno, and N. Vascon-
celos. Supervised learning of semantic classes for image
annotation and retrieval. Pattern Analysis and Ma-
chine Intelligence, IEEE Transactions on, 29(3):394–
410, 2007.

[8] Y.-N. Chen and H.-T. Lin. Feature-aware label space
dimension reduction for multi-label classification. In
Advances in Neural Information Processing Systems,
pages 1538–1546, 2012.

[9] M. M. Cisse, N. Usunier, T. Artieres, and P. Gallinari.
Robust bloom filters for large multilabel classification
tasks. In Advances in Neural Information Processing
Systems, pages 1851–1859, 2013.

[10] K. Crammer and Y. Singer. A family of additive on-
line algorithms for category ranking. The Journal of
Machine Learning Research, 3:1025–1058, 2003.

[11] D. L. Donoho. De-noising by soft-thresholding. Infor-
mation Theory, IEEE Transactions on, 41(3):613–627,
1995.

[12] A. Elisseeff and J. Weston. A kernel method for multi-
labelled classification. In Advances in neural informa-
tion processing systems, pages 681–687, 2001.

[13] B. Hariharan, L. Zelnik-Manor, M. Varma, and S. Vish-
wanathan. Large scale max-margin multi-label classi-
fication with priors. In Proceedings of the 27th Inter-
national Conference on Machine Learning (ICML-10),
pages 423–430, 2010.

[14] D. Hsu, S. Kakade, J. Langford, and T. Zhang. Multi-
label prediction via compressed sensing. In NIPS, vol-
ume 22, pages 772–780, 2009.

[15] S.-J. Huang, Y. Yu, and Z.-H. Zhou. Multi-label
hypothesis reuse. In Proceedings of the 18th ACM
SIGKDD international conference on Knowledge dis-
covery and data mining, pages 525–533. ACM, 2012.

[16] C.-L. Li and H.-T. Lin. Condensed filter tree for cost-
sensitive multi-label classification. In Proceedings of
the 31st International Conference on Machine Learn-
ing (ICML-14), pages 423–431, 2014.

[17] L. W. Mackey, M. I. Jordan, and A. Talwalkar. Divide-
and-conquer matrix factorization. In Advances in Neu-
ral Information Processing Systems, pages 1134–1142,
2011.

[18] C. D. Manning, P. Raghavan, H. Schütze, et al. Intro-
duction to information retrieval, volume 1. Cambridge
university press Cambridge, 2008.

[19] R. E. Schapire and Y. Singer. Boostexter: A boosting-
based system for text categorization. Machine learning,
39(2-3):135–168, 2000.

[20] E. Spyromitros, G. Tsoumakas, and I. Vlahavas. An
empirical study of lazy multilabel classification algo-
rithms. In Artificial Intelligence: Theories, Models and
Applications, pages 401–406. Springer, 2008.

[21] L. Sun, S. Ji, and J. Ye. Hypergraph spectral learning
for multi-label classification. In Proceedings of the 14th
ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 668–676. ACM, 2008.

[22] F. Tai and H.-T. Lin. Multilabel classification with
principal label space transformation. Neural Computa-
tion, 24(9):2508–2542, 2012.

[23] G. Tsoumakas, I. Katakis, and I. Vlahavas. Mining
multi-label data. In Data mining and knowledge dis-
covery handbook, pages 667–685. Springer, 2010.

[24] C. Vens, J. Struyf, L. Schietgat, S. Džeroski, and
H. Blockeel. Decision trees for hierarchical multi-label
classification. Machine Learning, 73(2):185–214, 2008.

[25] R. Yan, J. Tesic, and J. R. Smith. Model-shared sub-
space boosting for multi-label classification. In Pro-
ceedings of the 13th ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pages
834–843. ACM, 2007.

[26] H.-F. Yu, P. Jain, and I. S. Dhillon. Large-scale multi-
label learning with missing labels. In Proceedings of the
twenty-first international conference on Machine learn-
ing, 2014.

[27] M.-L. Zhang and K. Zhang. Multi-label learning by ex-
ploiting label dependency. In Proceedings of the 16th
ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 999–1008. ACM,
2010.

[28] M.-L. Zhang and Z.-H. Zhou. Multilabel neural net-
works with applications to functional genomics and
text categorization. Knowledge and Data Engineering,
IEEE Transactions on, 18(10):1338–1351, 2006.

[29] M.-L. Zhang and Z.-H. Zhou. Ml-knn: A lazy learning
approach to multi-label learning. Pattern recognition,
40(7):2038–2048, 2007.

[30] M.-L. Zhang and Z.-H. Zhou. A review on multi-label
learning algorithms. Knowledge and Data Engineering,
IEEE Transactions on, 26(8):1819–1837, 2014.

[31] Y. Zhang and J. G. Schneider. Multi-label output
codes using canonical correlation analysis. In Interna-
tional Conference on Artificial Intelligence and Statis-
tics, pages 873–882, 2011.

