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ABSTRACT

A number of times when using cross-validation (CV) while
trying to do classification/probability estimation we have
observed surprisingly low AUC’s on real data with very few
positive examples. AUC is the area under the ROC and mea-
sures the ranking ability and corresponds to the probability
that a positive example receives a higher model score than a
negative example. Intuition seems to suggest that no reason-
able methodology should ever result in a model with an AUC
significantly below 0.5. The focus of this paper is not on
the estimator properties of CV (bias/variance/significance),
but rather on the properties of the ‘holdout’ predictions
based on which the CV performance of a model is calculated.
We show that CV creates predictions that have an ‘inverse’
ranking with AUC well below 0.25 using features that were
initially entirely unpredictive and models that can only per-
form monotonic transformations. In the extreme, combining
CV with bagging (repeated averaging of out-of-sample pre-
dictions) generates ‘holdout’ predictions with perfectly op-
posite rankings on random data. While this would raise im-
mediate suspicion upon inspection, we would like to caution
the data mining community against using CV for stacking
or in currently popular ensemble methods. They can reverse
the predictions by assigning negative weights and produce
in the end a model that appears to have close to perfect
predictability while in reality the data was random.

1. INTRODUCTION

Cross-validation (CV) is a widely studied and commonly
used approach to evaluate modeling methodologies on finite
datasets. Rather than setting a fixed amount of data aside
for testing and thereby limiting the training set, CV splits
the datasets into N equal size folds and uses N-1 such folds
to build a model and one to estimate the performance on the
remaining one. It finally averages the performances across
all N folds as an estimate of the out-of sample performance.
CV is particularly appealing when the data set is small or
has only few positive examples. In the extreme case of leave-
one-out every datapoint can be its own fold. The conven-
tional wisdom is that CV may be computationally expensive
for large N, but is generally reliable ([1]). 10 folds perform
well and appear to provide a good tradeoff between eval-
uation variance and estimation variance. CV is known to
have notable variance[12; 4] and a body of literature points
at pitfalls when selecting methods based on maximum CV
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performance [13; 3; 9; 11; 5]. Only one (rather extreme)
case is known where accuracy estimation using CV fails com-
pletely. If p(y = 1) = 0.5 and z is constant, it is easily seen
that leave-one-out will produce an accuracy estimate of 0 [§]
for almost all modeling techniques. The reason is a slight
shift of the base-rate. If the held out datapoint was posi-
tive, the training set of all other data points would have a
baserate slightly below 0.5 and assign a negative class label.
A simple solution to avoid such shifts is stratified CV that
requires that each fold has the exact same number of pos-
itive examples and thereby maintains the baserate in both
training and holdout. But is this really the only case when
things can go wrong? We identify a similar effect leading to
inverse rankings and very low AUC’s in much less restricted
scenarios. Stacking and ensemble methods are very popular
approaches that use CV to generate pseudo ‘holdout’ pre-
dictions which serve as input to the next modeling step[15;
6; 2]. Our findings suggest that this practice can produce
very misleading and optimistic results when the number of
positives is small.

So far we have not mentioned the actual classifier or model-
ing technique. As a matter of fact, it is close to irrelevant.
As long as the algorithm is fairly sensitive to the underlying
distribution and produces somewhat well-calibrated proba-
bility estimates, the results will be misleading. In particular,
we experimented with Naive Bayes and logistic regression
and both exhibit the same artifact. The cause is not the
model but the shift in the underlying data. One final word
on the evaluation metrics: The artifact is most obvious in
AUC due to its sensitivity to minor relative shifts that can
change the ranking significantly. For accuracy to be affected,
the shifts need to occur close to the cutoff point of 0.5. As
this is a special issue on unexpected results we will keep the
discussion on a somewhat applied level without going into
the theoretical results we have obtained [10].

2. HOLDOUT PREDICTIONSFROM CV

We will start by describing the initial setting of a real world
project. Keep in mind that it serves only as demonstration
and is meant to tell a tale. We have observed the exact same
phenomena on other real domains as well as simulated data
using different implementations. In the later parts of the pa-
per we will abstract from the particular settings and explore
on simulated data the theoretical reason and drivers of the
artifacts. The goal of the motivating project was to identify
causal drivers of failures in a production process. The num-
ber of confirmed failures was only 18 out of a total number
of 3000 examples. The number of potential causes/features
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Figure 1: Distribution of AUC in 18-fold CV
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Figure 2: Comparing the AUC of stratified and regular CV

was approximately 900. Since some of them were categor-
ical, we started our initial investigation by calculating for
each of the features independently the holdout AUC using
logistic regression and 18-fold CV. We choose 18 to allow for
a stratification. A causal driver would be expected to show
up with a very high AUC. Contrary to the usually performed
average of the 18 AUC’s we are calculating the AUC on the
union of the predictions. This mirrors directly the stacking
scenario. Originally CV was necessitated by the categorical
features. However, we only use the numerical features in the
remainder of the paper.

Figure 1 shows the distribution of the CV AUC’s. We find
only one feature with very high AUC > 0.9 — indicating
some potential causal dependence. But alas, we have a lot
more features with AUC<0.2. Does this mean that these
features have a lot of signal indeed? Would flipping them
around make a good model? While it is possible that logistic
regression picks the for AUC ‘wrong’ sign of the parameter
because it is optimizing likelihood, it still seems surprising
to occur that often. Maybe this is an artifact from the shift
in base-rate as reported previously? Figure 2 shows the
effect of a stratification. Assigning one positive per fold
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Figure 3: Comparing stratified CV AUC and training AUC

always improves the AUC. The effect is most notable for
features with low signal. In particular, the gains are the
largest for features with AUC below 0.5. However, even
after stratification we are still observing a large number of
AUC’s below 0.5, some as low as 0.2. If true, this still means
that the CV prediction has a lot of opposite signal.

One question we have not really discussed so far is what is
the ‘true’ AUC for a given feature? There is a subtle dis-
tinction between the predictiveness of the feature and the
predictiveness of the realization of the feature in a finite
dataset. So far we have intuitively argued that any true
AUC has to be larger or equal to 0.5. But even if that is the
case, the realization in a small sample will obviously have
some variance. While this discussion is interesting from a
scientific standpoint - we care more to observe how the rank-
ing ability of the holdout prediction has changed relative to
the ranking ability of the original feature. The natural rank-
ing could be measured as the better of two natural orders
(decreasing or increasing). Instead of trying which is the
‘better’ direction (which would introduce a positive bias),
we will use the in sample AUC of a logistic model to keep
things comparable and account for the occasional ‘wrong’
sign of the logistic parameter. We do not think that this
will introduce an overfitting problem since we still only ap-
ply a monotonic transformation which can worst case only
flip the AUC’=1-AUC. Figure 3 shows this comparison of
training AUC and 18-fold stratified CV AUC. These results
are really interesting: For features with a significant signal
(AUC>0.5) the training and CV AUC’s are very similar.
We also observe a number of features with AUC<<0.5 both
on the training set and in cross-validation. These are the
cases where the likelihood optimization of logistic regres-
sion picks the wrong sign. But, we see that the majority of
features with very small CV AUC tend to have a training
AUC around 0.5. So for these features, the holdout predic-
tions are notably different from the original features. We
would like to reinforce that the CV holdout predictions in-
deed provide a good inverse ranking on the dataset. This
is not a measurement issue, but it is a property of the CV
predictions. Unfortunately it is not true signal that could be
exploited to predict failures on new data, instead the inverse
ranking was introduced by the cross-validation process. To
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illustrate the persistence of this effect let us take a closer
look at some of the ‘bad’ features with large differences.
The largest difference between training (AUC = 0.57) and
CV (AUC = 0.19) occurs for feature 304. One question we
would like to address here is whether it is just accidentally a
very low AUC due to some particular random assignment of
the negatives into the folds (remember that the positives are
stratified to one per fold). We re-estimate the CV AUC in
100 experiments where the negatives are assigned randomly.
The average AUC is 0.196 and apparently rather typical for
this feature and NOT caused by some random negative as-
signment. The conclusion is that the low AUC is indeed
consistent and not related to random folds. To summarize
our empirical observations:

e The CV predictions for some unpredictive features have
strong negative predictive information.

e The ‘spurious’ information is introduced by the CV
process (some explanation later).

e The effect remains even after stratification.

e The effect appears dominantly for features with no
natural ranking ability (AUC 0.5).

e The effect is not a variance effect from the random
assignment to folds.

3. SOMETHEORETICAL THOUGHTSAND
EXPLANATIONS

So what is causing the appearance of an inverse signal? The
effect is fundamentally the same that happened in the accu-
racy failure of leave-one-out for balanced datasets. In some
sense CV is a zero-sum setting. When you take from a fixed
set of datapoints one (or more) examples out of the training
and assign them to the test set, the two sets are no longer
independent. An example that is in one cannot be in the
other. This argument holds for the shift in base-rate when
assigning more positives to the training and therefore less
to the test. In fact, it is easy to generalize the accuracy
case to failure of AUC for arbitrary baserates: Consider the
artificial case of one-holdout with a constant feature x = 1
for all observations. Let N be the number of examples and
S the number of positive examples. The predictions of most
modeling approaches including a logistic model (or Naive
Bayes) M (z) = M(1) are:

(1)

o 2|

M)y = 0) = 2)
It is easily seen that the predictions for all positive observa-
tions is smaller than the prediction for all negative observa-
tions leading to an AUC of 0. But this can again be fixed
by stratification. However, similar shifts also happen to the
distribution of the independent variable x.

Without going into the formal proof, lets consider stratified
CV with one positive example per fold for a non-predictive
binary x € 0,1 with P(y|z) = P(y). Intuitively, assigning
a positive example (z,y) = (1,1) to a fold implies that the
union of the training folds has slightly reduced probability
for P(y = 1|x = 1) whereas the probability of P(y|x = 0) re-
mains largely (ignoring the random assignment of negatives
for now) unaffected. As a result, the positive example along
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Figure 4: CV AUC as a function of the conditional mean

with all other negatives with x = 1 in the holdout fold gets a
slightly smaller prediction than (negative) all examples with
2 = 0. The definition of AUC is the probability of a positive
example having a higher prediction than a negative. For all
examples with = 0 this is 0.5 (they have the same pre-
diction) and for the other half of examples with = 1 this
probability is 0. So we can expect an AUC close to 0.25.
And indeed we have shown that 0.25 is a theoretical upper
bound for the AUC in this scenario [10].

So what is happening practically? Whenever the positive
example in the holdout fold has a value x that is large, the
z’s for the positives in the training are on average lower.
If the conditional mean of z|y = 1 is lower than z|y = 0
logistic regression will estimate a negative parameter on =x.
As a result, the positive example in the holdout will receive
a relatively low prediction. The same holds for the alter-
native case of a small x in the holdout. In essence, as the
conditional mean x|y = 1 in the training switches sides with
the conditional mean x|y = 0 (which is moving randomly
as a result of the sampling), the sign of the parameter is
alternating and due to the zero sum nature it tends to indi-
cate the wrong direction. This also explains why the effect
is dominant for truly uninformative features where the true
parameter is 0.

The next experiment uses simulated data where x is sampled
from a normal distribution N(0,1) and y is sampled indepen-
dently (so x is not predictive) with a baserate of 0.01. We
generate 1000 datasets with each having 100 observations.
We use stratified CV where the number of folds equals the
number of positives (on average 10 folds).

Figure 4 illustrates our intuition very well. It shows the CV
AUC as a function of the conditional mean z|y = 1. The
wide range of AUC (up to 0.9) is driven by the sample vari-
ance. We also observe many experiments with small AUC’s.
These low AUC’s occur whenever the conditional mean is
close to 0 and switches sides depending on the fold. At this
point we would like to briefly comment on the properties of
CV as an estimator of AUC and how it relates to our obser-
vations. While initially it appears odd that there are that
many small AUC’s, it makes perfect sense from an estima-
tion perspective. If the sample from an independent variable
in a given experiment can be such that the target and the
feature happen to be strongly correlated (and the estimator
will rightly measure a high AUC), there need to be instances
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where the estimator results in AUC << 0.5. Otherwise it
cannot be unbiased and have an expectation of 0.5. So in
some sense CV has to create the inverse signal for uncorre-
lated samples in order to be consistent. Table 1 shows the
statistics of the distribution of the AUC estimates across the
1000 experiments. The first observation is that when used
in the traditional sense of averaging the AUC across folds
the mean is indeed very close to 0.5. However, this is not
the case when calculating the AUC on the union of all folds
as it is for instance implemented in WEKA[14]. The mean
of 0.464 is far from the truth and the non-stratified case is
even worse at 0.362. We are not aware whether the biased
nature of the union has been explicitly discussed in previous
literature. We are only aware of the discussion of inconsis-
tencies between the two version by Forman and Scholz [7].
They however do not observe any bias, but only suggest that
the union case would “punish models with badly calibrated
probability estimates”.

Stratification does not affect the traditional CV estimation
since the shift in base-rate does not affect AUC on a single
fold. The picture in Figure 4 is only slightly different when
plotting the mean AUC in the traditional setting of averag-
ing folds. The V shape remains identical; the only difference
is that the points are slightly shifted up. In fact, the AUC
on the union is always slightly lower than the mean AUC,
which is consistent with some of our theoretical results [10].
But to reinforce our previous message: the holdout predic-
tions based on which the AUC is calculated are the same
and they are inversely affected.

4. PRACTICAL CONSIDERATIONS

For the remainder of this paper we are looking at some im-
plications as well as different scenarios and how they affect
the properties of the holdout predictions.

4.1 Number of Folds

How does the number of folds affect the AUC? In an at-
tempt to allow for as many training examples as possible
our previous experiments used as many folds as there were
positive examples. Here we explore what happens if we re-
duce the number of folds. Intuitively, this might reduce the
model performance in general, but could help against the
inverse CV effect since we no longer single out one posi-
tive example. We expect to see the highest variance in the
conditional mean for the largest number of folds. This is
a direct result of the variance of the estimate of the mean
of a distribution to be decreasing in the number of obser-
vations. The estimate of a mean from a single observation
(the one positive in the holdout) by definition has the high-
est variance and therefore the highest chance of deviating

Method Min | Median | Mean Max
Union No Stratify | 0.0941 0.3560 | 0.3621 | 0.8514
Union Stratify 0.1570 0.4894 | 0.4641 | 0.8757
Mean No Stratify | 0.1289 0.5404 | 0.5018 | 0.8770
Mean Stratify 0.1156 0.5566 | 0.4980 | 0.8751

SIGKDD Explorations

Table 1: Properties of the AUC estimation using CV. Union
indicates that the predictions are pooled prior to calculation
the AUC (stacking scenario) whereas Mean indicates that
the AUC is calculated on each fold independently and finally
averaged.
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Figure 5: CV AUC as a function of the number of folds
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Figure 6: Bias as a function of the number of bagging iter-
ations of stratified CV on a bad feature

far from the true conditional mean. To avoid the effect of
changes of the baserate we only consider stratified 18,9,6,3
and 2-fold CV for our worst feature. Figure 5 shows indeed
the largest AUC for 2 folds and the smallest for number of
folds equal to the number of positive examples. The impli-
cation would suggest using as few fold as possible in the CV
stacking scenario. However, for informative features there
will be a tradeoff between the reduction of the inverse CV
effect and the decrease of a model performance.

4.2 Bagging

Bagging has the reputation to never really hurt. Here it
does. Kohavi[8] even suggested that repeated cross-validation
should reduce the variance of the CV estimate of model per-
formance. So instead of running stratified CV only once, we
ran it multiple times and averaged the holdout predictions
prior to calculating the AUC.

Figure 6 shows that for a feature with moderately low AUC,
it very quickly degrades and reaches completely inverse pre-
dictions (AUC = 0) within 8-10 bagging iterations. The
smaller the initial AUC, the quicker was the decrease. In
the light of our theoretical explanation, this degradation is
very intuitive. In a given CV split, all examples in one fold
with the same x value have identical predictions. Positive
examples always have lower or equal predictions. If you
average predictions from multiple fold splits the positives
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Figure 7: AUC under stratified CV as a function of the
number of bad features in the model

always get the low predictions while negatives sometimes
have a high predictions (when the positive in the fold had
the opposite z value) and sometimes a low prediction. Af-
ter a number of experiments the positive cases all have the
lowest predictions.

On the good side, for a feature without a reasonable ini-
tial AUC repeated cross-validation does not systematically
affect the AUC. Nevertheless these results are alarming. If
this averaged holdout prediction was used in a stacking set-
ting, the model would perfectly predict the target as long
as it is evaluated on some split of the original dataset. Only
completely new data (which is typically not the case for
stacking) would show the truly random performance of this
model and only new data can prevent the incorporation of
such feature into an ensemble.

4.3 Multivariate Models

So far we have only considered single features. What hap-
pens in the normal case of a multivariate model? To inves-
tigate this we start with the infamous worst feature (most
prone to low CV AUC) and add one-by-one six more fea-
tures in reverse order of their CV AUC. Figure 7 shows how
the CV performance deteriorates as more and more such fea-
tures are added to the model. The solid circles above show
the single AUC of the last added feature and light circles
the performance of the model including all of the previous
features. This result is alarming in the sense that in the
more realistic setting with multiple features, the holdout
predictions can have an AUC close to 0.

5. CONCLUSION

The main message of this paper is to beware when using CV
in the context of stacking and when the number of positives
is very low. If the nature of the problem requires CV, it is
advisable to make the number of folds as small as possible.
In addition, an intermediate test should reject all holdout
predictions with AUC < 0.5 as inputs to the next modeling
layer. On the upside, a low AUC in the context of CV is not
nearly as surprising as it might appear on first sight (part
of the estimation process) and typically only indicates that
the feature/approach under study is NOT predictive. So re-
jecting low AUC is not likely to cause type two errors.
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