Classification Trees for Problems with Monotonicity
Constraints

R. Potharst
Erasmus University Rotterdam
P.O. Box 1738
3000 DR Rotterdam
Netherlands

potharst@few.eur.nl

ABSTRACT

For classification problems with ordinal attributes very often
the class attribute should increase with each or some of the
explaining attributes. These are called classification prob-
lems with monotonicity constraints. Classical decision tree
algorithms such as CART or C4.5 generally do not produce
monotone trees, even if the dataset is completely monotone.
This paper surveys the methods that have so far been pro-
posed for generating decision trees that satisfy monotonic-
ity constraints. A distinction is made between methods that
work only for monotone datasets and methods that work for
monotone and non-monotone datasets alike.

Keywords

monotone, monotonicity constraint, classification, classifica-
tion tree, decision tree, ordinal data

1. INTRODUCTION

Even though data mining is often applied to domains where
little theory is available, in many cases it is either known
that the target function satisfies certain constraints, or it is
simply required that the model constructed satisfies those
constraints.

One type of constraint that is available in many applica-
tions states that the dependent variable (or its expected
value) should be a monotone function of the independent
variables. Economic theory would state for example that
people tend to buy less of a product if its price increases
(ceteris paribus), so price elasticity of demand should be
negative. The strength of this relationship and the precise
functional form are however usually not dictated by eco-
nomic theory. Other well-known examples are labor wages
as a function of age and education (see e.g. [11]) or so-called
hedonic price models where the price of a consumer good de-
pends on a bundle of characteristics for which a valuation
exists [9].

Another class of problems where monotonicity constraints
often apply are so-called selection problems, such as the se-
lection of applicants for a job or a loan on the basis of their
characteristics. As an example, consider a selection proce-
dure for applicants to a job based on the outcomes of a series
of academic and/or psychological tests. If each of the test

SIGKDD Explorations.

A. J. Feelders
Utrecht University
P.O. Box 80089
3508 TB Utrecht
Netherlands

ad@cs.uu.nl

outcomes z; is scored from low (bad performance) to high
(good performance) and the classes are taken to be 0 = not
selected and 1 = selected, then it would be very natural to
demand the selection rule to be monotone. In fact, the re-
quirement of monotonicity would be equivalent to excluding
all situations in which applicant A scores better or at least
as good on all tests as applicant B, whereas B gets selected
and A does not.

Because the monotonicity constraint is quite common in
practice, many data analysis techniques have been adapted
to be able to handle such constraints.

Isotonic regression, for example, deals with regression prob-
lems with monotonicity constraints. The traditional method
used in isotonic regression is the pool-adjacent violators al-
gorithm [15]. This method however only works in the one-
dimensional case. A versatile non-parametric method is
given in [11].

Monotonicity constraints have also been investigated in the
neural network literature. In [16] the monotonicity of the
neural network is guaranteed by enforcing constraints on
the weights during the training process. Daniels and Kamp
[8] present a class of neural networks that are monotone by
construction. This class is obtained by considering multi-
layer neural networks with non-negative weights.

Various methods have also been proposed for classification
problems with monotonicity constraints, such as decision
lists [4], logical analysis of data [5], rough sets [6] and instance-
based learning [3; 1].

Classification or decision trees are among the most popular
algorithms for classification problems in data mining and
machine learning. Therefore we consider in this paper meth-
ods to build monotone classification trees.

In Section 2 we define monotone classification and other
important concepts that are used throughout the paper. We
also provide a motivating example concerning applicants for
a bank loan, that is used to illustrate many of the algorithms
presented.

The paper then divides into algorithms that work on mono-
tone datasets (Section 3) and algorithms that also work on
non-monotone data sets (Section 4).

In Section 3.2 we present an algorithm that forces the con-
struction of a monotone tree by adding, if required, the cor-
ner elements of a node with an appropriate class label to the
dataset.

In Section 4 we present two algorithms that work on non-
monotone data. The first is due to Ben-David [2], and

Volume 4, Issue 1 - page 1

adapts the well-known entropy splitting criterion by includ-
ing a measure for the non-monotonicity of the tree that re-
sults after the split. In Section 4.2 we present a straight-
forward generate-and-test approach that constructs many
different trees by resampling the training data, and selects
a monotone tree.

Finally, in Section 5 we end with a discussion, and some
ideas for further research.

2. MONOTONE CLASSIFICATION

Let X be a partially ordered set of instances, called the
instance space, and let C be a finite linearly ordered set of
classes. The order relations of X and C will both be denoted
by <. An allocation rule is a function

f:xXx—=C

which assigns a class from C to every instance in the instance
space X. A classification problem is the problem of finding
a class labeling f that satisfies certain constraints, to be
specified in the problem description. One possible constraint
is that the labeling f be monotone: a monotone allocation
rule is a function f: X — C for which

x <x' = f(x) < f(x') (1)

for all instances x,x’ € X. In this paper, X will always be
a feature space X = X1 X X X ... X X, consisting of vectors
x = (z1,%2,...,2p) of values on p features or attributes.
Here we assume that each feature takes values z; in a linearly
ordered set X;. The partial ordering < on X will be the
ordering induced by the order relations of its coordinates
Xt x = (21,%2,...,2p) < X' = (21,25,...,2;) if and only
if z; < x for all 4. It is easy to see that a classification rule on
a feature space is monotone if and only if it is non-decreasing
in each of its features, when the remaining features are held
fixed.

A very common classification problem occurs, when the al-
location rule should be induced from an available dataset
or set of examples: for a finite number of instances a cor-
responding class is given; an allocation rule should be con-
structed that ‘fits’ these data. Formally, a dataset is a series
(x1,¢1), (x2,¢2),. .., (Xn,cn) of n examples (x;,c¢;) where
each x; is an element of the instance space X and ¢; is a
class label from C. The presence of noise may lead to in-
consistencies in the dataset that might disturb the faultless
operation of our algorithms. We call a dataset consistent
if for all ¢, 5 we have x; = x; = ¢; = ¢;. That is, each in-
stance in the dataset has a unique associated class. For such
a dataset it makes sense to speak of the class A\(x) associ-
ated with an instance x. Another important distinction we
make in this paper is between monotone and non-monotone
datasets. In fact, the methods of Section 3 work only for
monotone datasets whereas those of Section 4 can be used
also for non-monotone datasets. We call a dataset monotone
if for all 4,j we have x; < x; = ¢; < ¢;. It is easy to see
that a monotone dataset is necessarily consistent. In fact, if
x; = X; then we have x; < x; and x; < x;, 50 ¢; < ¢; and
¢j < ¢, and consequently, ¢; = ¢;. This discussion leads to
the following formal definitions.

DEFINITION 1. A consistent dataset D is a pair (D,)

where D C X is a finite subset of the instance space X and
A: D — Cis a class labeling of the elements of D. The

SIGKDD Explorations.

pairs (x, A(x)) with x € D will be called the ezamples of the
dataset.

Note that the class labeling A of a consistent dataset D =
(D,) is not an allocation rule: it is only defined on D, a
subset of X, while an allocation rule must be defined on all
elements of the instance space X. In fact, a classification
problem for a consistent dataset consists of finding an allo-
cation rule f that is an extension of the class labeling A of
the dataset to the whole instance space X .

DEFINITION 2. A monotone dataset is a consistent dataset
D = (D, \) for which the implication (1) holds for all x,x’ €
D with f replaced by A.

We will now give an example of a monotone classification
problem. Suppose a bank wants to base its loan policy on
a number of features of its clients, for instance on income,
education level and criminal record. If a client is granted a
loan, it can be one in three classes: low, intermediate and
high. So, together with the 'no loan’ option, we have four
classes. Suppose further that the bank wants to base its
loan policy on a number of credit worthiness decisions in
the past. These past decisions are given in Table 1:

client | income education crim.record | loan

cll low low fair no

cl2 low low excellent low

cl3 average intermediate excellent intermediate
cl4 high low excellent high

clb high intermediate excellent high

Table 1: The bank loan dataset

A client with features at least as high as those of another
client may expect to get at least as high a loan as the other
client. So, finding a loan policy compatible with past deci-
sions amounts to solving a monotone classification problem
with the dataset of Table 1.

In order to save space we will often map the values of the
attributes of a dataset to a set of numbers. For instance,
Table 1 could be written as

X X2 X3 |C
0 0 1 0
0 0 2 1
1 1 2 2
2 0 2 3
2 1 2 3

when we use the mapping low — 0, average — 1, high —
2 for feature X1 = income, etc. More often, we will write
concisely

001 |0
002 |1
112 | 2
202 | 3
212 | 3

for the above dataset.
Finally, we will establish some notation to be used through-
out this paper:

Volume 4, Issue 1 - page 2

e The minimal and maximal elements of C will be de-
noted by ¢min and cmax respectively.

e [a,b] denotes the interval {x € X : a < x < b}, where
both a and b are instance vectors from X.

e (a,b] denotes the interval {x € X : a < x < b}, where
both a and b are instance vectors from X

e For all x € X, we define the upset generated by x as

tx={yex:y>x}

and, if D is a subset of X’ the upset generated by D is
defined as

D= J =

xeD

e Similarly, for x € X, we define the downset generated
by x as

Ix={yex:y<x}

and the downset generated by a subset D of X is de-
fined as

w=J

xeD

2.1 Monotone Extensionsof Datasets

As noted above the problem of finding a solution to a mono-
tone classification problem amounts to finding a monotone
extension f of the class labeling A of a dataset D = (D, \).
Formally, a function f : X — C is an extension of A : D — C,
if the restriction of f to D i.e. f|D = A. Or, if f(x) = A(x)
for all x € D. If D = (D,)) is monotone, we denote the
collection of all monotone extensions of A with M (D). Note
that M (D) is partially ordered by the order relation f < f’
iff f(x) < f'(x) for all x € X. We will now define two
special elements of this collection.

DEFINITION 3. If D = (D, A) is a monotone dataset, we
define A2, : X — C, and \E,, : X — C, as follows: for all
xekX

A2 (x) = { max{My)yeDNix} ifx €D
- | Cmin otherwise

and
A2, (x) = min{\(y):y e Dntx} ifxelD
e T | Cmax otherwise.

We will now show! that the functions AZ;, and A2, , as
defined, are the minimal resp. maximal elements of M (D).

LEMMA 1. If D = (D,)) is a monotone dataset, for the

functions AE,, and A2, the following statements hold:

(1))‘Ein: Agax € M(D)
(i) M(D) = {f: 2B, < f < A2, and f monotone}.

Theoretically, we now have at least two solutions for a mono-
tone classification problem with dataset D = (D, A): the
minimal and maximal extension of A. These two allocation

!The proofs of all lemmas in this paper can be found in [12].

SIGKDD Explorations.

rules we will call the minimal rule and the mazimal rule
respectively. In addition we have for every point x in the
instance space bounds that any rule f must satisfy:

)\Elin(x) < f(x) < Aﬁax(x)‘

Any monotone allocation rule that satisfies these bounds
will be another solution to our problem.

In Section 3 we will require the representation of our al-
location rule to have a specific form, viz. the form of a
classification tree or decision tree.

3. METHODS FOR MONOTONE DATA

Classification or decision trees have long been used for clas-
sification problems. Well-known introductions to this field
can be found in [7] and [14]. In this paper we will only con-
sider so-called univariate decision trees: at each split the
decision to which of the disjoint subsets an element belongs,
is made using the information from one feature or attribute
only. Within this class of univariate decision trees, we will
only consider so-called binary trees. For such trees, at each
node a split is made using a test of the form

X; <c (orX; <c)

for some ¢ € X;,1 <4 < n. Thus, for a binary tree, in each
node? the associated set T C X is split into the two subsets
T, ={xe€T:z;<cland T, = {x €T :z; >c}. An
example of a univariate binary decision tree is the following:

C1 C2

Figure 1: Univariate Binary Decision Tree: Example

This tree splits the instance space X = R? into the five
regions

Ti= {xeR®:2 <4.5,22<1.8,23 <05}
To= {xeR®:z <4522 <1.8,z3> 0.5}
Ts= {xeR®:z >45,2> <18}
Ty= {xeR®:zy>1823<27}
Ts {x €R®: x5 > 1.8,23 > 2.7}

the first and the last of which are classified as ¢i1 and cs
respectively, and the remaining regions as cz. The allocation
rule that is induced by a decision tree 7 will be denoted by

fr.

2By slight abuse of language in the sequel we will make no
distinction between a node or leaf and its associated subset.

Volume 4, Issue 1 - page 3

LEMMA 2. If X is an instance space with continuous fea-
tures and T is a univariate binary decision tree on X, then
if T C X is the subset associated with an arbitrary node or

leaf of T,
T={xeX:a<x<b}=(a,b (2)
for some a,b € X with a < b.

Here we use the expression X instead of X, because in some
cases X would have to be extended with infinity-elements in
order to have a representation of form (2) for each node or
leaf.

If X is an instance space with discrete features, then any
subset 7" associated with a univariate binary decision tree 7
on X will satisfy

T={xeX:a<x<b}=]a,b] (3)

for some a,b € X, with a < b. As an abbreviation we will use
the notation T = [a, b] for a set of this form. Below we will
call min(T) = a the minimal element® and max(T) = b the
mazimal element of T. Together, we call these the corner
elements of the node T'.

3.1 Testingthe Monotonicity of aDecisionTree

In this subsection we describe an efficient algorithm for test-
ing whether a given decision tree 7 is monotone or not. A
naive way to test the monotonicity of a decision tree 7 would
be to check all pairs of instances x,x’ € X, determine f7(x)
and fr(x') by throwing them through the tree and check
whether we find a non-monotonicity like x < x’ and at the
same time f7(x) > fr(x’). Of course, this method would be
very time consuming and, in the continuous case, even sheer
impossible. Fortunately, there is a straightforward manner
to test the monotonicity using the maximal and minimal
elements of the leaves of the decision tree:

for all pairs of leaves T, T’:
if (fT(T) > f7(T") and min(T) < ma.x(T')) or

(fT(T) < f7(T") and max(T) > min(T’))
then stop: 7 not monotone

It is easy to check that a decision tree is passed through the
above algorithm without stopping, if and only if the tree is
monotone.

3.2 The Direct Method

In this subsection we will describe the algorithm proposed
in [12] for the induction of a monotone binary decision tree
from a monotone dataset. The algorithm has been tested
extensively on artificial and real world data, see [13] for an
application to a bankruptcy problem. We will first describe
the algorithm for the case of a discrete feature space. At the
end of the section we will indicate what changes are needed
to run this algorithm in the continuous case.

Since this is a survey article on monotone decision trees, it
should be mentioned that in addition to this direct method
of constructing a monotone decision tree, there is also an
indirect method: first, construct a so-called quasi-monotone
tree, and subsequently, if needed, repair the quasi-monotone
tree if it still contains non-monotonicities. This indirect

3In the continuous case this definition implies min(T) ¢ T,
but that does not lead to any complications.

SIGKDD Explorations.

method was proposed in [10] for two-class problems and
generalized to multi-class problems in [12]. Although the
concept of quasi-monotonicity is theoretically satisfying, the
indirect method is found to be lacking efficiency compared
to the direct method that is treated in this subsection.

An algorithm for the induction of a decision tree 7 from a
dataset D contains the following ingredients:

e a splitting rule S: defines the way to generate a split
in each node,

e a stopping rule H: determines when to stop splitting
and form a leaf,

o a labeling rule L: assigns a class label to a leaf when
it is decided to create one.

If S, and £ have been specified, then an induction algo-
rithm according to these rules can be recursively described
as in Figure 2.

tree(X, Do):
split(X, Do)

split(T, var D):
D := update(D, T);
if H(T, D) then
assign class label £L(T, D) to leaf T'
else
begin
(TfaTT) = 8(T7 D);
split (T, D);
split (T, D)
end

Figure 2: Monotone Tree Induction Algorithm

In this algorithm outline there is one aspect that we have
not mentioned yet: the update rule. In the algorithm we use,
we shall allow the dataset to be updated at various moments
during tree generation. During this process of updating we
will incorporate in the dataset knowledge that is needed to
guarantee the monotonicity of the resulting tree.

Note, that D must be passed to the split procedure as a
variable parameter, since D is updated during execution of
the procedure.

In addition to the update rule, we need to specify a splitting
rule, a stopping rule and a labeling rule. Together these
are then plugged into the algorithm of Figure 2 to give a
complete description of the algorithm under consideration.

We start with describing the update rule. When this rule
fires, the dataset D = (D, A) will be updated: at most two
elements will be added to the dataset, each time the update
rule fires. As soon as a node T is accessed, either the min-
imal element of T or the maximal element, or both will be
added to D, provided with a well-chosen class labeling. If
both these corner elements of T already belong to D, noth-
ing changes. The complete update rule is given in Figure 3.
When a minimal element of node T is added to the dataset,
it gets the highest possible class label. In contrast, a max-
imal element that is added to the dataset will receive the
lowest possible class label. The reason for this choice has to
do with the desire to produce a small tree. It speeds up the
course towards homogeneous leaves.

Volume 4, Issue 1 - page 4

update (var D, T):
a := min(T);
b := max(T);
if a ¢ D then
begin
A(a) = Apax(a);
D :=DU{a}
end;
if b ¢ D then
begin
A(B) := ARin (b);
D := DU {b}

end;

return D = (D, \)

Figure 3: The Standard Update Rule

The splitting rule S(T, D) must be such that at each node
the associated subset T is split into two nonempty subsets

S(T,D) =(T;,T;) withTy={xe€T:z; <c} (4)
and T, ={x €T :z; >c}

for some ¢ € {1,...,p}, and some ¢ € X;. Furthermore, the
splitting rule must satisfy the following requirement: ¢ and
¢ must be chosen such that

Ix,x' € DNT with A(x) # Ax),x € Ty and X' € T,.. (5)

Next, we consider the stopping rule H(T,D). As a result
of the actions of the update rule, both the minimal element
min(T") and the maximal element max(T") of T belong to D.
Now, as a stopping rule we will use:

_f true if A(min(7T)) = A(max(T)),
H(T,D) = { false otherwise. 6)
Finally, the labeling rule £(T,D) will be simply:
L(T,D) = Mmin(T)) = A(max(T)). (7)

For the proof that this algorithm works we will need two
lemmas. The first of these lemmas tells us that if we add
an instance to a dataset while giving it a class label that
is in between the lower and upper bounds that are given
by the dataset as it is now, the dataset remains monotone.
The second lemma tells us that if the minimal and maximal
element of a node both have the same class label, then we
can make this node into a leaf with that class label.

LEMMA 3. Let D = (D,)\) be a monotone dataset with
D C X and \: D = C. Let xT be an arbitrary instance
vector with x* & D, and let ¢ € C be such that

Aain(x ") < € < ARae ().
If Dt = (D1, \") is defined as follows:

Dt =Du {x*}
)\+(x) ={ A(x)

c forx=x

forxe D
+

then the following assertions are true:
(i) DT is a monotone dataset,
(i) ARin < ARin < ARy < AR

(iii) M(D1) c M(D).

SIGKDD Explorations.

(iv) Q(D*) c Q(D).

LEMMA 4. IfD = (D, X) is a monotone dataset and a,b €
D, such that a < b and A(a) = Xb) = ¢ € C, then for
all monotone allocation rules f € M(D) we have for all
xeT={xeX:a<x<b}

fix)=c

Now we can formulate and prove the main theorem of this
section.

THEOREM 1. Let X be a finite instance space with dis-
crete features and let D = (D, \) be a monotone dataset on
X. Ifthe functions S, H, L satisfy the requirements (4),(5),(6)
and (7), then the algorithm of Figure 2 together with the up-
date rule of Figure 8 will generate a monotone decision tree
T with fr € M(D).

Proof: The update rule of the algorithm generates a finite
sequence of datasets D1, Ds, . .., Dy, with D; = (D;, \;), D; €
X, \i:D; — C,1 <i<k,such that, according to Lemma 3,
each D; is monotone, D C D1 C D> C ... C Dy,

D D D D D D
)‘minS)‘ i SSAm:ﬂnS)‘mngS)‘ a S)‘maxa

min max
and
M(Dy) C...C M(D1) C M(D).

The update rule guarantees, that the minimal and maxi-
mal element of each node, where the stopping rule fires, are
members of the dataset. For such a node, Lemma 4 as-
serts there is only one labeling possible. For the last dataset
Dy we must have: all minimal and maximal elements of all
leaves are members of Dy, so M (Dy) will consist of just one
member: fr. The process must be finite since we have a
finite instance space X, and each D; must be a subset of
X. O

Note, that this theorem actually proves a whole class of al-
gorithms to be correct: the requirements set by the theorem
to the splitting rule are quite general. Nothing is said in
the requirements about how to select the attribute X; and
how to calculate the cut-off point ¢ for a test of the form
t = {X; < c¢}. Obvious candidates for attribute-selection
and cut-off point calculation are the well-known impurity
measures like entropy, Gini or the twoing rule, see [7].

Figure 4: Monotone Decision Tree for the Bank Loan
Dataset

Volume 4, Issue 1 - page 5

As an illustration of the operation of the presented algorithm
we will use it to generate a monotone decision tree for the
dataset of Table 1. As an impurity criterion we will use
entropy, see [14]. Starting in the root, we have T = X, so
a =000 and b = 222. Now, A2, (000) = 0 and A2, (222) =
3, so the elements 000:0 and 222:3 are added to the dataset,
which then consists of 7 examples. Next, six possible splits
are considered: X1 < 0,X;: < 1,X><0,X2<1,X3<0
and X3 < 1. For each of these possible splits we calculate the
decrease in entropy as follows. For the test X; < 0, the space
X = [000, 222] is split into the subset T, = [000, 022] and
T, = [100,222]. Since T} contains three data elements and
T, contains the remaining four, the average entropy of the
split is % X 0.92+$ x1 = 0.97. Thus, the decrease in entropy
for this split is 1.92—0.97 = 0.95. When calculated for all six
splits, the split X; < 0 gives the largest decrease in entropy,
so it is used as the first split in the tree. Proceeding with the
left node T = [000, 022] we start by calculating A2, (022) =
1 and adding the element 022:1 to the dataset D, which
will then have eight elements. We then consider the four
possible splits Xo < 0,X; < 1,X3 < 0 and X3 < 1, of
which the last one gives the largest decrease in entropy, and
leads to the nodes T; = [000, 021] and T;. = [002, 022]. Since
AD..(021) = 0 = A(000), Ty is made into a leaf with class 0.
Proceeding in this manner we end up with the decision tree
of Figure 4 which is easily checked to be monotone.

3.3 A variation

A useful variation of the above algorithm is the following.
We change the update rule to

update (var D,T):
if T is homogeneous then

begin
a := min(T);
b := max(T);
if a ¢ D then
begin
Aa) = Aax(a);
D :=DU{a}
end;
if b ¢ D then
begin
A(b) = Agin (b);
D := DU {b}
end
end

Figure 5: Update Rule: a variation

thus, only adding the minimal and maximal elements of a
node T to the dataset if the node is homogeneous, i.e. if

Vx,y € DNT : A(x) = A(y).

The splitting rule, stopping rule and labeling rule remain
the same. With these changes the theorem remains true
as can be easily seen. However, whereas with the standard
algorithm from the beginning one works at 'monotonizing’
the tree, this algorithm starts adding corner elements only
when it has found a homogeneous node. For instance, if
one uses maximal decrease of entropy as a measure of the
performance of a test-split ¢ = {X; < ¢}, this algorithm is

SIGKDD Explorations.

equal to Quinlan’s C4.5-algorithm, until one hits upon a ho-
mogeneous node; from then on our algorithm starts adding
the corner elements min(7") and max(7') to the dataset, en-
larging the tree somewhat, but making it monotone. We
call this process cornering. Thus, the algorithm of Figure 5
can be seen as a method that first builds a traditional (non-
monotone) tree with a method such as ID3, C4.5 or CART,
and next makes it monotone by adding corner elements to
the dataset. This observation yields also the possible use of
this variant: if one has an arbitrary (non-monotone) tree for
a monotone classification problem, it can be ’repaired’ i.e.
made monotone by adding corner elements to the leaves and
growing some more branches where necessary.

As an example of the use of this remark, suppose we have
the following monotone dataset D:

000 | O
001 |1
100 | O
110 | 1

Suppose further, that someone hands us the following deci-
sion tree for classifying the above dataset:

Figure 6: Non-monotone Decision Tree

This tree indeed classifies D correctly, but although D is
monotone, the tree is not. In fact, it classifies data element
001 as belonging to class 1 and 101 as 0. Clearly, this is
against monotonicity rule (1). To correct the above tree,
we apply the algorithm of Figure 5 to it. We add the max-
imal element of the third leaf 101 to the dataset with the
value A2, (101) = 1. The leaf is subsequently split and the
resulting tree is easily found to be monotone, see Figure 7.
Of course, if we would have grown a tree directly with the
above dataset D with the standard algorithm we would have
ended up with a smaller tree, which is equally correct and
monotone, see Figure 8. Nevertheless, it helps to know
that we can make an arbitrary tree monotone by splitting
up some of the leaves and adding a few more branches.

The main algorithm of this section further suggests a new
impurity measure to be used as an attribute selection crite-
rion. First note, that for each T = {x € X : a < x < b}
with T N D # § we have

Amax (@) < Ain (b).
This can be seen as follows: let xo be an element of T N D,
then

Amax(@) < M(x0) < Amin(b).

Volume 4, Issue 1 - page 6

Figure 7: The above tree, but repaired

X <0

X3 <0 1

Figure 8: Monotone Tree produced by the Standard Algo-
rithm

We now define the variation of the dataset on T as
var (T) = |[Azax (@), Ain ()] — 1,

the number of different class labels that are possible within
node T minus one. It is clear that var(T) = 0 iff A2,.(a) =
AD..(6). Clearly, this measure can be used as an impu-
rity measure, and the decrease in variation can be taken
as an attribute selection criterion. However, experiments
have shown that it is inferior to entropy or Gini: trees grown
with this impurity measure tend to be somewhat larger than
those grown with entropy or the Gini-index.

3.4 Changed\Neededor ContinuousAttrib utes

Here we will sum up the changes that need to be made to the
described algorithms in case one or more of the attributes is
continuous. For simplicity of notation we will assume that
all attributes X;,1 < ¢ < p, are continuous on a finite or
infinite subinterval X; of R. If in practice, some of the at-
tributes are discrete while others are continuous, the reader
can easily adapt the described procedures to that situation.
Thus, we assume that we have an infinite instance space
X = X1 x...Xx Xp, with X; a subinterval of R, the set of
real numbers. However, the dataset D = (D,) will always
be finite. In particular, let us assume that attribute X; has
values

e <2 <. <"

in the dataset D, where k; is the number of different values
that attribute X; has in the dataset D. Of course, k; < |D|.
In fact, with probability one we have k; = |D|, but, because

SIGKDD Explorations.

of rounding off, in practice k; < |D| will often occur. Now,
we define

xP = {xgl),...,xgki)}
and
XP =P x &7 x ... xxl.

Thus, X? is a finite space which includes all instances in D,
and which is discrete. So we have mapped the classification
problem with infinite instance space X onto a classification
problem with finite space X”. Using the methods of this
section we can generate a decision tree for the classification
problem on XP. The final step then will be to translate this
decision tree on X to a decision tree on X.

Let 7 be a binary monotone decision tree on X7, generated
by one of the methods of this section using dataset D. Each
test of this tree will have either the form

X; <zl (8)

for some j with 1 < j < k;, for some ¢ € {1,...,p}. With
a test of the form (8) j = k; is impossible since in that case
one of the splitted sets would be empty.
Now, we replace each test of the form (8) by
) (G+1)
X; < x; +2xi

These changes will give us a binary decision tree on X that
classifies the dataset D correctly.
As an example, let us assume we have a dataset with one
continuous attribute Xi, while all other attributes are dis-
crete. Let us further assume that X; has values

0.51 0.98 143 2.87 3.1
in the dataset. With these values, seen as discrete values,
a decision tree is built which happens to have two nodes in
which X plays a role: in one node we have a test X; < 0.98
and in the other node we have X; < 2.87. Both tests are
subsequently replaced by X1 < (0.98+1.43)/2 or X; < 1.205
and X; < (2.87 + 3.11)/2 or X1 < 2.99 respectively. This
is similar to applying a continuity correction when approx-
imating a discrete distribution by a continuous distribution
in statistics.
As a final remark, note that in practice it is usually advisable
to discretize continuous attributes, since working with too
many values per attribute leads to prohibitive computing
times.

4. METHODS FOR NON-MONOTONE DATA

The algorithms discussed so far work for monotone datasets.
Even if the true underlying relation is monotone, the ob-
served data may, as a consequence of noise, not be. Fur-
thermore, sometimes we simply require that the allocation
rule be monotone, even if we believe that the underlying
relation is not. In that case the task is to find a monotone
model with good predictive performance.

In this section we look at two approaches that can handle
non-monotone and inconsistent datasets.

4.1 The Weighted Sum Method

Ben-David [2], proposes a tree induction algorithm that is
similar to well-known algorithms such as C4.5 and CART.

Volume 4, Issue 1 - page 7

The important difference with those algorithms is that the
splitting rule includes a measure of the degree of monotonic-
ity of the tree in addition to the usual impurity measure.
To this end a k x k symmetric non-monotonicity matrix
M is defined, where k equals the number of leaves of the
tree constructed so far. The m;; element of M equals 1
if leaf T; is non-monotone with respect to leaf 7; and 0
otherwise. Clearly, the diagonal elements of M are 0. A
non-monotonicity index I is defined as follows

w

k2 -k
where W denotes the sum of M’s entries, and k% — k is the
maximum possible value of W for any tree with k leaves [2].
Note however that this maximum can only be achieved if
there are at least k distinct classes.
Based on this non-monotonicity index the order-ambiguity-
score of a decision tree is defined as follows

Ao { 0 ifI=0
| —(log, I)™" otherwise

I =

Finally the splitting rule is redefined to include the order-
ambiguity-score

S =FE+pA,

where S denotes the total-ambiguity-score to be minimized,
E is the well-known entropy measure, and p is a parame-
ter that expresses the importance of monotonicity relative
to inductive accuracy. The quality of each split is deter-
mined by computing its total-ambiguity-score, where A is
the order-ambiguity-score of the tree that results from the
split.

Note that W is a rather crude measure of the degree of
non-monotonicity of a tree, since each non-monotone leaf
pair has equal weight. A possible improvement would be to
weight the different leaves according to their probability of
occurrence. The matrix M’ could now be defined as follows.
The mj; element of M’ equals p(T;) x p(Tj) if leaf T; is non-
monotone with respect to leaf T; and 0 otherwise, where
p(T;) denotes the proportion of cases in leaf T;. The non-
monotonicity index becomes

w’ w’
(k2 —k)/k2 _ 1—1/k’

where W' is again the sum of the entries of M’, and the max-
imum is attained when all possible leaves are non-monotone
with respect to each other and occur with equal probability
1/k. W' is an estimate of the probability that if we draw
two points at random from the feature space, these points
turn out to lie in two leaves that are non-monotone with
respect to each other. Note that p(T;) x p(Tj) is an upper
bound for the degree of non-monotonicity between node T;
and T; because not all elements of T; and T; have to be
non-monotone with respect to each other.

The most straightforward way to measure the degree of non-
monotonicity of a tree would be to use it to label all data,
and simply count the number of non-monotone pairs created
by the labeling. This is however computationally rather
demanding since this should be performed for the collection
of trees that results from applying each possible split.

I =

SIGKDD Explorations.

4.2 A Generate-and-EstApproach

The use of a measure of monotonicity in determining the
best split, as discussed in the previous section, has certain
drawbacks. Monotonicity is a global property, i.e. it in-
volves a relation between different leaf nodes of a tree. If
the degree of monotonicity is measured for each possible
split during tree construction, the order in which nodes are
expanded becomes important. For example, a depth-first
search strategy will generally lead to a different tree then a
breadth-first search. Also, and perhaps more importantly, a
non-monotone tree may become monotone after additional
splits.

In view of these drawbacks, we consider an alternative ap-
proach in this section. Rather than enforcing monotonicity
during tree construction, we generate many different trees
and check if they are monotonic. The collection of trees may
be obtained by drawing bootstrap samples from the training
data, or making different random partitions of the data in
a training and test set. This approach allows the use of a
standard tree algorithm except that the minimum and max-
imum elements of the nodes have to be recorded during tree
construction, in order to be able to check whether the final
tree is monotone. This approach has the additional advan-
tage that one can estimate to what extent the assumption
of monotonicity is correct, by looking at the proportion of
monotone trees versus non-monotone trees obtained.

The tree algorithm used is in many respects similar to the
CART program as described in [7]. The program makes
binary splits and uses the Gini-index as splitting criterion.
Furthermore it uses cost-complexity pruning [7] to gener-
ate a nested sequence of trees from which the best one is
selected on the basis of test set performance. During tree
construction, the algorithm records the minimum and max-
imum element for each node. These are used to check the
whether a tree is monotone. In Figure 9 we give pseudo-
code for the tree construction algorithm with recording of
the corner elements of each node.

The function leaf determines whether a node should be turned
into a leaf. This is the case when the node is homogeneous,
all examples in the node have identical attribute values, or
the node contains too few examples to be split any further.
A class label is assigned to the leaf, by default based on the
majority rule.

The minimum and maximum element of root node Ty are
set to —oo and oo respectively. The updating of corner ele-
ments proceeds as follows. The minimum of 7% is identical
to that of T, and the same goes for the maximum of 7.
For the maximum of 7Ty and the minimum of T, z;+ (the
split attribute) is set to ¢* (the split value) and for all other
attributes they are the same as the maximum and minimum
of T respectively.

Determining the non-monotone pairs of leaf nodes is straight-
forward: take any pair (7,7') with fr(T) > fr(T’) and
check if min(T) < max(T"). If this is the case, then add
(T, T") to the list of non-monotone leaf-pairs.

In the next section we illustrate this algorithm by applying
it to an economic dataset concerning house prices.

4.3 Application to HousePricing

In this section we illustrate the resampling approach de-
scribed in the previous section. We discuss its application to
the prediction of the price-category of a house in the city of

Volume 4, Issue 1 - page 8

growtree(X,D : training sample):
T() =X
forie{l,...,p}
min; (7)) := —o0
maxi(To) = +00
split(To,min(Tp), max(To), D)

split(T', min(7T'), max(T"), D):
if leaf(T, D) then
assign class label £(T,D) to T
else
S := allsplits(T’, D)
(j*: C*) ‘= arg maX(j,c)es qualitY(jz C, T: D)
T={x€T:zjx <c"}
T, ={xe€T:z;» >c'}
forie{l,...,p}
min;(7%) := min;(7T)
max; (T) := max;(T)
ifi=j*
ma.xl(Tl) = C)k
min;(T,) :=c"
else
max;(T;) := max;(T)
min;(7;) := min;(T)
split (T;, min(T}), max(T}), D)
split (77, min(77), max(71,), D)

Figure 9: Tree Induction Algorithm with recording of node
corners

Den Bosch (a medium sized Dutch city with approximately
120,000 inhabitants).

The attributes x1, z2,. .., zp are characteristics of the house.
They have been selected on the basis of interviews with
experts of local house brokers, and advertisements offering
real estate in local magazines. The monotonicity constraint
makes sense for this application, since the better the char-
acteristics of a house, the higher the asking price. The most
important attributes are listed in Table 2.

It is a relatively small data set with only 119 observations
used for illustrative purposes only. Of all 7021 distinct
pairs of observations, 2217 are comparable, and 78 are non-
monotonic. For the purpose of this study we have discretized
the dependent variable (asking price) into the classes below
median (euro 157,955) and above median. After this dis-
cretization of the dependent variable 9 pairs of observations
are non-monotonic.

In order to determine the effect of application of the mono-
tonicity constraint we repeated the following experiment
100 times. The dataset was randomly partitioned (within
classes) into a training set (60 observations) and test set (59
observations). The training set was used to construct a se-
quence of trees using cost-complexity pruning. From this
sequence the best tree was selected on the basis of error rate
on the test set (in case of a tie, the smallest tree was chosen).
Finally, it was checked whether the tree was monotone and
if not, the upperbound W' for the degree of monotonicity
(as defined in Section 4.1) was computed.

Out of the 100 trees thus constructed, 57 turned out to be
monotone and 43 not. The average misclassification rate of
the monotone trees was 14.93% against 14.94% for the non-

SIGKDD Explorations.

Symbol Definition

DISTR type of district
four categories ranked from bad to good
SURF total area including garden
RM number of bedrooms
TYPE . apartment

1
2. row house

3. corner house

4. semidetached house
5. detached house

6. villa

VOL volume of the house

STOR number of storeys
GARD type of garden

four categories ranked from bad to good
GARG 1. no garage

2. normal garage
3. large garage

Table 2: Definition of attributes for house pricing example

monotone trees. Thus, the predicitive accuracy was virtually
identical.

Figure 10 depicts one of the 43 non-montonic trees, and fig-
ure 11 one of the 57 monotone trees obtained in the experi-
ment. Class label 0 corresponds to prices below the median
and label 1 to prices above median. In figure 10, the number
of a leaf is given directly below it. It is easily verified that
the leaf-pairs (3,4), (3,7), (5,7) and (6,7) are non-monotone.
The degree of non-monotonicity W' (see Section 4.1) of this
tree is only about 1%. The tree in figure 11 is monotone
and has only 3 leaf nodes. The estimated error of the non-
monotone tree shown is 15.3%, and the estimated error of
the monotone tree 13.6%.

The average degree of non-monotonicity W’ of the non-
monotone trees was about 1.6%, which is quite low, the more
if we take into consideration that this is an upper bound.
Another interesting comparison is between the average sizes
of the trees. On average, the monotone trees had about 3.19
leaf nodes, against 6.95 for the non-monotone trees. Thus,
the monotone trees are considerably smaller and therefore
easier to understand. The variability around the mean num-
ber of leaf nodes can be used as a measure of the stability
of the trees generated. For the monotone trees, the vari-
ance of the number of leaf nodes was 0.91 against 5.05 for
the non-monotone trees. Clearly then the monotone trees
are more stable upon repeated sampling than there non-
monotone counterparts.

5. DISCUSSION

Monotonicity is a common type of constraint on models in
data mining. Furthermore, monotonicity may be an impor-
tant requirement for explaining and justifying model out-
comes. We have investigated the use of monotonicity con-
straints in classification tree algorithms.

We have presented algorithms that work on monotone data
only, as well as algorithms that work on both monotone and
non-monotone data. The former could be made more widely
applicable by developing sensible methods to make a non-
monotone data set monotone by making as few adjustments

Volume 4, Issue 1 - page 9

Figure 11: Example of a monotone tree

to the data as possible.

For non-monotone data we have presented two algorithms,
the weighted-sum method and a generate-and-test algorithm.
In preliminary experiments with the generate-and-test algo-
rithm on house pricing data, we have found that the pre-
dictive performance of monotone trees was comparable to
the performance of the non-monotone trees. However, the
monotone trees were much simpler and therefore more in-
sightful and easier to explain. Furthermore, the monotone
trees proved to be more stable upon repeated sampling. This
provides interesting prospects for applications where mono-
tonicity is an absolute requirement, such as in many selec-
tion decision models.

An interesting, as yet unexplored, approach for non-monotone
data would be to use a pruning method that prunes towards
monotone subtrees of the initially grown tree. One could
create a nested sequence of monotone subtrees of the initial
tree, and select from this sequence the tree with the best pre-
dictive accuracy on a test set. Another interesting extension
of the work surveyed in this paper is to consider multivariate
classification trees, where each split may be based on more
than one attribute.

SIGKDD Explorations.

6. REFERENCES

[1] A.Ben-David. Automatic generation of symbolic multi-
attribute ordinal knowledge-based DSS’s: methodol-
ogy and applications. Decision Sciences, 23:1357-1372,
1992.

[2] A. Ben-David. Monotonicity = maintenance in
information-theoretic machine learning algorithms.
Machine Learning, 19:29-43, 1995.

[3] A. Ben-David, L. Sterling, and Y. Pao. Learning and
classification of monotonic ordinal concepts. Computa-
tional Intelligence, 5:45-49, 1989.

[4] J. Bioch. Dualization, decision lists and identification
of monotone discrete functions. Annals of Mathematics
and Artificial Intelligence, 24:69-91, 1998.

[6] J. Bioch and T. Ibaraki. Complexity of identification
and dualization of positive Boolean functions. Infor-
mation and Computation, 123:50-63, 1995.

[6] J. Bioch and V. Popova. Rough sets and ordinal classi-
fication. In A. S. H. Arimura, S. Jain, editor, Algorith-
mic Learning Theory, Lecture Notes in Artificial Intel-
ligence 1968, pages 291-305. Springer, 2000.

[7] L. Breiman, J. Friedman, R. Olshen, and C. Stone.
Classification and Regression Trees (CART).
Wadsworth, 1984.

[8] H. Daniels and B. Kamp. Application of MLP networks
to bond rating and house pricing. Neural Computation
and Applications, 8:226-234, 1999.

[9] O. Harrison and D. Rubinfeld. Hedonic prices and the
demand for clean air. Journal of Environmental Eco-
nomics and Management, 53:81-102, 1978.

[10] K. Makino, T. Susa, K. Yano, and T. Ibaraki. Data
analysis by positive decision trees. In Y. Kambayashi
et al., editors, Proceedings of the International Sym-
posium on Cooperative Database Systems for Advanced
Applications (CODAS), pages 257-264, Kyoto, Japan,
December 1996. World Scientific.

[11] H. Mukarjee and S. Stern. Feasible nonparametric esi-
mation of multiargument monotone functions. Journal
of the American Statistical Association, 89(425):77-80,
1994.

[12] R. Potharst. Classification using Decision Trees and
Neural Nets. PhD thesis, Erasmus University Rotter-
dam, 1999.

[13] R. Potharst and J. Bioch. Decision trees for ordinal clas-
sification. Intelligent Data Analysis, 4(2):97-112, 2000.

[14] J. Quinlan. C4.5 Programs for Machine Learning. Mor-
gan Kaufmann, 1993.

[15] T. Robertson, F. Wright, and R. Dykstra. Order Re-
stricted Statistical Inference. Wiley, 1988.

[16] S. Wang. A neural network method of density estima-
tion for univariate unimodal data. Neural Computation
& Applications, 2:160-167, 1994.

Volume 4, Issue 1 - page 10

