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ABSTRACT
In a time of information glut, observations about complex
systems and phenomena of interest are available in several
applications areas, such as biology and text. As a conse-
quence, scientists have started searching for patterns that
involve interactions among the objects of analysis, to the
effect that research on models and algorithms for network
analysis has become a central theme for knowledge discovery
and data mining (KDD). The intuitions behind the plethora
of approaches rely upon few basic types of networks, identi-
fied by specific local and global topological properties, which
we term “pure” topology types.

In this paper, (1) we survey pure topology types along with
existing sampling algorithms that generate them, (2) we in-
troduce novel algorithms that enhance the diversity of sam-
ples, and address the case of cellular topologies, (3) we per-
form statistical studies of the stability of the properties of
pure types to alternative generative algorithms, and a joint
study of the separability of pure types, in terms of their em-
bedding in a space of metrics for network analysis, widely
adopted in the social and physical sciences.

We conclude with a word of caution to the practitioners, who
sample pure topology types to assess the “statistical signifi-
cance” of their findings, e.g., the p-value of the clustering co-
efficient is sensitive to the sampling algorithm used. We find
that different pure types share similar topological properties.
Further, real world networks hardly present the variability
profile of a single pure type. We suggest the assumption
of “mixtures of types” as an alternative starting point for
developing models and algorithms for network analysis.

1. INTRODUCTION
In recent years, researchers in application areas such as
bioinformatics, computational biology, and those that rotate
around the processing of electronic texts have made available
huge amount of “networked data,” to the data mining com-
munity at large, to the effect that models and algorithms for
network analysis have become a central theme for KDD [30;
16; 19; 25; 29]. On the other hand, in the social and math-
ematical sciences, (social and complex) networks have been
an object of research for a few decades now [20; 38; 11; 22; 7;
8; 13; 12]. Over the years, the communication across com-
munities has increased, the major results of each discipline
have been shared and assimilated by the others, and, occa-

sionally, old ideas have resurfaced under a different guise.
In particular, the notion of “network topology” has recently
gained attractiveness, as several complex phenomena of sci-
entific interest tend to manifest in those networks that are
characterized by specific “topological properties” [20; 48; 6;
21; 10]. Thus, it is not surprising to find that a fundamen-
tal characteristic shared by recent approaches to network
analysis is the central role played by a set of basic types of
networks, identified by specific local and global topological
properties of interest, which we term “pure” topology types.

In data mining and machine learning, the study of real
world networks is essential for the development of sound
theoretical models. In a typical application, for example,
exploratory data analysis (EDA) techniques suggest reason-
able probabilistic assumptions for the quantities of interest.
Then, being able to posit a model for the data that takes
advantage of EDA findings, as it is the case for “generative”
models, ultimately leads to unbiased inferences and robust
predictions [36; 41; 45; 26; 27; 31; 37; 3; 46; 32; 4]. In
general, different analyses of real networks rely upon two
basic tasks: (1) that of “generating,” or “sampling,” net-
works that display realistic properties of interest, and (2)
that of “determining” which pure topology type(s) a given
network is close to. The concept of “generative model” for
networks plays a fundamental role in both tasks. For ex-
ample, models that generate networks with realistic prop-
erties given few parameters can be used for compression,
simulations and testing, models of pure types can be used
to compare ideal properties to those of observed networks,
and so on. More in detail, fitting a model to an observed
network means to project its adjacency matrix onto the low-
dimensional parameter space that is defined by the model.
For compression, the representation of networks as points in
this low-dimensional space is itself of interest. For simulat-
ing networks, we sample adjacency matrices starting from a
point in the parameter space, according to the model spec-
ifications; the closer the starting point is to the projection
of an observed network, and the more the probabilistic as-
sumptions underlying the model hold, the better the ran-
domly simulated networks will mimic the properties (e.g.,
functions of the adjacency matrix) of the observed network.
For testing, we compare the parametric representation of
an observed network to that of a pure topology type or to
that of another observed network. Alternatively, given an
observed network, the ability to discriminate between pure
topology types can be used to predict which phenomena the
system under scrutiny is expected to display, e.g., in a dy-
namic setting. Further, in order to apply the large body of
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type-specific results present in the literature to real world
problems, it is crucial to map an observed network to the
corresponding pure type(s). In this paper,

1. we survey the pure topology types, along with the ex-
isting sampling algorithms for generating each of them;

2. we introduce novel algorithms aimed at enhancing the
diversity of sampled networks, and at addressing the
case of cellular topology type;

3. we perform statistical studies of the stability of the
properties of pure topology types to alternative gener-
ative algorithms, and we perform a joint study of the
separability of pure topology types, in terms of their
embedding in a space of metrics for network analysis,
widely adopted in the social and physical sciences.

2. PROBLEMS
The utility and appeal of sampling algorithms stems from
the following implication. If we can generate a network at
random that displays the properties of interest, it is “pos-
sible” that the imaginary generative process we posited ac-
tually outlines a latent phenomenon that is truly happening
in the data. This implication can be very convincing, de-
pending on the soundness of the semantics that inform the
imaginary process, in a specific application, to the effect
that the latent phenomenon is perceived as “plausible.” For
example, the “six degrees of separation” among individu-
als observed by Milgram (1967) is captured by the “small
world” topology of Watts and Strogatz (1998) where the
semantic that informs the sampling algorithm is that “indi-
viduals form local acquaintances, few of which relocate to
places far away.” This stylized model of behavior is enough
to replicate the phenomenon observed by Milgram, and it
“sounds” like a plausible explanation [39; 48]. In section 3.1
we address the following problem.

Problem 1. (Sampling) How can we generate topologies
that have a set of desired properties with high probability?

Sampling algorithms can be both deterministic and proba-
bilistic, and typically depend on a small set of parameters.
To fully exploit their power, it is important to provide ways
to estimate such parameters from observed quantities.

As we discussed above, a related practical problem is that of
determining which properties we should expect to observe
in a network under analysis. The pure topology types are
used by practitioners to this extent, e.g., homeland security
officers are interested in determining whether an observed
social network is cellular, given partial measurements about
it. If so the conclusion will be drawn that destabilization
strategies that are successful on pure cellular topologies will
be successful in destabilizing the given network. In section
3.2 we address the following problem.

Problem 2. (Typing) How can we determine which pure
topology type a given network is closest to?

In order for the “homeland security argument” above to be
reasonable, it is important for alternative algorithms for the
same pure type to be “stable,” i.e., to produce networks that

are close, in some reference space1, and for algorithms for
different pure types to be “separable,” i.e., to produce net-
works that are far apart, in some reference space, see Figure
1. The stability of topological properties, to alternative sam-
pling algorithms for the same topology type, suggests that
choosing one specific algorithm over another2 does not harm
the validity of the conclusions. The separability of topologi-
cal properties, entailed by sampling algorithms for different
topology types, implies that any set of observed topologi-
cal properties uniquely indicates a pure topology type. In
other words, separability suggests that it is logically possi-
ble to answer questions like ”is the given network of type
X?” Most of the experiments in section 4 are devoted to
assess stability and separability of the sampling algorithms
surveyed or introduced in section 3.1.t y p e 1t y p e 2t y p e 3

X 1
X 2a l g 1a l g 2.. M e t r i c S p a c e s a m p l en e t w o r k s

Figure 1: Sampling algorithms for pure topology types 1, 2,
and 3 are mapped to the corresponding sets of all possible
network samples, in the metric space X1 × X2. If these sets
overlap the pure types are not separable and the logic impli-
cation between properties and topologies is broken. That is,
topology types still imply observed properties, but observed
properties do not imply a specific topology type, rather the
lack of properties implies the absence of topology types.

2.1 Related Work
The pure topology types we consider in the next section
have been introduced separately over the years [20; 39; 48;
6; 21; 10; 5; 40; 23]. To the best of our knowledge neither
exploratory nor comprehensive studies exist, which attempt
to compare the stability of alternative sampling algorithms,
or to assess the separability of the sampled networks, in
terms of the collection of metrics commonly used for network
analysis.
Typing network topologies from data is a fairly novel area
of research. Initial explorations are present in specific appli-
cation domains such as covert network analysis [18].
Related research efforts aim at providing intuitions and math-
ematical theory that describe what happens to topological
properties when only partial information is available, e.g.,
sub-samples of scale free networks are not scale free [44], at
exploring the effectiveness of search strategies, e.g., greedy

1The reference space used in this paper is defined by 47
metrics widely adopted in the social and physical sciences.
We embed all sampled networks in this space.
2Note that there are possibly infinitely many sampling al-
gorithms that, although different, produce networks with
topological properties typical of the same pure type.
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Figure 2: A glance at the relevant topologies on a ring. Note that in a ring there is a natural notion of distance that is distinct
from the one entailed by shortest paths, i.e., the distance between nodes A and B is proportional to the arc-length that joins
them, along the circle outlined by the ring.

search finds short chains of acquaintances in small world net-
works [34; 35; 33; 1], at developing models of information
flow [42; 43] and information exchange [17], or at exploring
the robustness of metrics for network analysis to variations
in the topological properties [24; 9].

3. PURE TOPOLOGY TYPES
In this section, we give heuristic descriptions of the pure
topology types. We then survey existing sampling algo-
rithms and introduce our own, in order to provide each of
these types with a precise meaning. We conclude with a
discussion of strategies the can be used to determine the
topology type of a sample network. Without loss of gener-
ality we specify the sampling algorithms for the pure topol-
ogy types on a ring lattice. Note that a ring lattice entails
a natural notion of distance, which is distinct from that
of shortest path. A pair of nodes are close according to
the ring-induced distance if the (shortest) arc that connects
them, along the circle outlined by the ring, is small, i.e., it
crosses few other nodes. Having two notions of distance is
necessary, as a topology type may need both to be defined,
e.g., small world. Figure 2 shows some examples.

Topology 1. (Ring Lattice) Each node is connected to
its neighbors, according to the ring-induced distance.

Topology 2. (Small World) Each node is connected to
several of its neighbors and few distant nodes, according to
the ring-induced distance [48].

Topology 3. (Erdös Random) Each node is connected
to a random set of the remaining nodes [20].

Topology 4. (Core-Periphery) Nodes belong exclusively
to either the core or the periphery. Core and periphery nodes
are connected to core nodes, while there are no edges among
periphery nodes [10].

Topology 5. (Scale Free) Most of the nodes are con-
nected to few other nodes, while few nodes are connected to
many other nodes. This relation is formally described with
a power law, between the number of edges and the number
of connections [5].

Topology 6. (Cellular) Nodes are divided into cells.
Connections are frequent between nodes within each cell, and
rare between nodes in different cells [2; 23].

In the rest of this paper we represent a network in terms of
a graph G = (V, E), where V is a set of vertices and E is a
set of edges, undirected and of unit weight.

3.1 Sampling Algorithms
We now survey the existing sampling algorithms for each of
the pure topology types above. To complement the survey,
we introduce novel algorithms aimed at enhancing the di-
versity of sampled networks, and at addressing the case of
cellular topology type. The following algorithms are avail-
able in C++ as part of ORA [14].

3.1.1 Ring Lattice
A ring lattice with parameters (n, k) is sampled as follows.

Ring Lattice 1. Define n as the number of nodes in
the graph, and k as the number of neighbors for each node.
Given (n, k) do as follows.

1. for: each node v=1,...,n

1.1. do: add an edge from v to its k closest neighbors.

Note, this is a deterministic algorithm, and there is no vari-
ability in the sampled networks.
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3.1.2 Small World
A streamlined definition of a small world topology is one
that negatively correlates the probability of two nodes being
connected to their distance, for some notion of distance.
Watts and Strogatz (1998) propose a way to generate a small
world topology on a ring lattice with undirected edges. In
a ring lattice with parameters (n, k) the nodes are placed in
a circular fashion, and each node is connected with its k/2
closest neighbor clockwise and counter-clockwise by means
of undirected edges. In order to generate a small-world
topology with parameters (n, k, p) the following algorithm
is used.

Small World 1. Define n as the number of nodes in the
graph, k as the number of neighbors for each node, and p as
the probability of rewiring. Given (n, k, p) do as follows.

1. for: k=1,..., k/2

1.1. for: each node v=1,...,n

1.1.1. do: with probability p, substitute the edge from v to
(v+k) with an edge from v to u; where u is selected uni-
formly at random over the entire ring, with duplicate
edges forbidden.

This algorithm is useful for generating topologies and to
study their properties for p ∈ [0, 1]; specifically, for p = 0
we retain the original ring lattice topology and for p = 1 we
generate a random graph, see below. Watts and Strogatz
(1998) also define intuitive measures of connectivity. The
number of edges in the shortest path between two nodes,
averaged over all pairs nodes, is L(p). The fraction of edges
that exist among neighbors of v, that is, the number of edges
among the kv neighbors of v over kv(kv−1)/2, the maximum
number of edges, averaged over all nodes, is C(p). They
use these two quantities to profile small world topologies by
computing the observed values of L and C and comparing
them to those of a random graph—see discussion point no.1.
In particular, Lobserved < Lrandom and Cobserved > Crandom

would constitute evidence to support a small world topology.

Kleinberg (2001) proposes a model to generate small world
topologies on a two-dimensional grid with directed edges.
In the two-dimensional grid lattice with parameters (n, k)
each one of the n2 nodes is connected with k of its close
neighbors, where the lattice distance between two nodes is
defined as the number of lattice steps that separate them,
that is, d((i, j), (k, l)) = |k − i| + |l − j|. In order to build a
small world topology with parameters (n, k, l, r) the follow-
ing algorithm is used.

Small World 2. Define n as the number of nodes in the
graph, k as the number of neighbors for each node, l as the
number of long-range contacts, and r as the exponent of the
power law. Given (n, k, l, r) do as follows.

1. do: build a grid lattice (n,k)

2. for: each node v=1,...,n

2.1. repeat: l times

2.1.1. do: add a directed edge from v to u, where u is se-
lected with probability proportional to d(u, v)−r, with
duplicate edges forbidden.

This algorithm is easier to deal with than the previous one,
analytically, in that the parameters (k, l) determine the num-
ber of close neighbors and long-range contacts, and in that

we do not break the symmetry of the problem by substitut-
ing neighbors for long-range contacts but we add the latter
on top of the former instead.
We propose a different model to generate small world topolo-
gies from a ring-lattice with directed edges. In the ring
lattice with parameters (n, k) each one of the n nodes is
connected with each of its close neighbors with probability
p1 and to all of its long-range contacts with probability pro-
portional to p2. In our formulation the control is not on the
number of neighbors and long-range contacts, but rather on
the probability of having a neighbor and a long-range con-
tact as in a proper Erdös random graph. In order to build
a small world topology with parameters (n, k, p1, p2, r) the
following algorithm is used.

Small World 3. Define n as the number of nodes in the
graph, k as the number of neighbors for each node, p1 as the
probability of neighbor, p2 as the probability of a long-range
contact, and r as the exponent of the power law. Given
(n, k, p1, p2, r) do as follows.

1. do: build a grid lattice (n,k)

2. for: each node v=1,...,n

2.1. repeat: k times

2.1.1. do: remove a directed edge from v to u, where u is
each of the k close neighbors in turn, with probability
1 − p1, with duplicate edges forbidden.

2.1.2. do: with probability p2 add a directed edge from v to
u, where u is selected with probability proportional to
d(u,v)-r, with duplicate edges forbidden.

Remark 1. It is important to note that in the small-world
networks the interactions directed out of each node are gen-
erated according to the same probability distribution, and
independently of other nodes.

3.1.3 Erd̈os Random
We generate Erdös random graph (Bollobás 2001) using two
algorithms. The first algorithm depends on the number of
nodes (n) and the probability of a connection (p): it simply
scans through the n2 ordered pairs of nodes and connects
each of them with probability p.

Random 1. Define n as the number of nodes in the graph,
and p as the probability of an edge. Given (k, p) do as fol-
lows.

1. for: each node pair (u, v) ∈ [1, n]2

1.1. do: with probability p, add an edge from u to v.

The second algorithm depends on the number of nodes (n)
and the number of edges (m): it simply samples m ordered
pairs of nodes, among the n2 possibilities, with equal prob-
ability and without repetition, and connects them.

Random 2. Define n as the number of nodes in the graph,
and m as the number of edges. Given (k, m) do as follows.

1. do: order all node pairs (u, v) ∈ [1, n]2 in a vector e

2. do: set equal to 1 m components of e, uniformly at ran-
dom with probability 1

n2 and without repetition.

3. do: add an edge from u to v if I(u,v)(e) = 1.
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Table 1: Summary of generative algorithms.
Type Proposed by Parameters
Ring Lattice n (number of nodes), k (number of neighbors)
Random 1. (prob.) Erdös & Renyi n (number of nodes), p (prob. of an edge)
Random 2. (number) Erdös & Renyi n (number of nodes), m (number of edges)
Small World 1. (rewire) Watts & Strogatz n (number of nodes), k (number of neighbors), p (prob. of rewire)
Small World 2. (number) Kleinberg n (number of nodes), k (number of neighbors), l (number of distant

contacts), r (exponent of power law)
Small World 3. (prob.) Airoldi n (number of nodes), k (init. number of neighbors), p (prob. of

neighbor), q (prob. of distant contact), r (exponent of power law)
Scale Free 1. (pref.) Albert & Barabasi n (number of nodes), n0 (init. number of nodes), p (prob. of edge),

p0 (prob. of edge between init. nodes)
Scale Free 2. (power) Airoldi n (number of nodes), m (number of edges), r (exponent of power law)
Cellular 1. (uniform) Airoldi & Carley n (number of nodes), k (number of cells), p (prob. of edge within), q

(prob. of edge between)
Cellular 2. (power) Airoldi & Carley n (number of nodes), k (number of cells), p (prob. of edge within), q

(prob. of edge between), r (exponent of power law)
Core-Periphery 1. (uniform) Borgatti & Everett n (number of nodes), p0 (proportion of core nodes), p (porb. of edge)
Core-Periphery 2. (pref.) Airoldi n (number of nodes), p0 (proportion of core nodes), p (porb. of edge)

3.1.4 Scale Free
For an undirected network, a scale free topology is one where
the degree distribution for all edges is identical and follows a
log-normal profile. For a directed network, a scale-free topol-
ogy entails that the in and out degree distributions of all
edges is identical and follows a log-normal profile. In order
to build a scale-free topology with parameters (n, n0, p, p0)
we can use the algorithm by Albert & Barabasi (2001):

Scale Free 1. Define n as the number of nodes in the
graph, n0 as the number of nodes in the initial graph, p as
the probability of an edge, and p as the probability of an edge
between initial nodes. Given (n, n0, p, p0) do as follows.

1. do: build a random graph (n0, p0)

2. for: each of the remaining nodes v = n0 + 1, ..., n

2.1. do: add node v

2.2. repeat: v-1 times

2.2.1. do: add a directed edge from v to u with probability
p, where u is selected among the nodes in the graph
with probability proportional to the total degree, with
duplicate edges forbidden.

Remark 2. This is our version of the algorithm in Albert &
Barabasi (2001), which leaves out exact details about how
many edges each new node should have.

Alternatively we propose a different algorithm, that con-
trols the variability of the final degree distribution directly,
rather than adding nodes aiming at obtaining a degree dis-
tribution with the desired parameters in the infinite limit.
Our approach is more effective for modest network sizes, and
allows for control on the parameter values “exactly” rather
than depending on an infinite limit that is never reached.
The algorithm depends on parameters (n, m, r) and works
as follows.

Scale Free 2. Define n as the number of nodes in the
graph, m as the number of edges, and r as the exponent of
the power law. Given (n, m, r) do as follows.

1. for: each pair of nodes (u, v) ∈ [i, n]2

1.1. do: set p(u,v) = d(u, v)−r

2. repeat: m times

2.1. do: sample (u,v) with probability p(u,v)

2.2. do: add an edge from u to v

Remark 3. An analytic result that describes sets of param-
eter values for these two algorithms that lead to the same
degree distribution is not presented here.

3.1.5 Core-Periphery
We give two algorithms to generate networks with this topol-
ogy type. The two algorithms differ in the way periphery
nodes are connected to core nodes. Both algorithms depend
on the number of nodes (n), the proportion of core nodes
(p) and the connectivity among core nodes (pin): we scan
through each node and assign it to the core with probabil-
ity p or to the periphery with probability 1 − p, and we
connect the core nodes with a random topology. At this
point the random attachment algorithm connects each of
the periphery nodes to a core node chosen at random with
equal probability—this is the algorithm implicit in Borgatti
and Everett (1999)—whereas the preferential attachment
algorithm connects each of the periphery nodes to a core
node chosen according to a probability proportional its total
degree—in the same fashion of our version of the scale-free
topology.

3.1.6 Cellular
We give two algorithms to generate cellular networks [23]
that differ in the way the nodes are distributed among cells.
Both algorithms depend on the number of nodes (n), the
number of cells (k), the average connectivity among nodes
within the same cell (pin) and the average connectivity among
cells (pout): briefly the algorithms create a random graph
(k, pout) that represents the interconnections among cells
and then for each cell they create a random graph (nk, pin).
Any connection between two cells in the random graph (k, pout)
is specified to the node level by choosing to random pair
(i, j) of nodes, where node i and node j belong to the inter-
connected cells. In the first algorithm the size of the cell is
uniform, that is, each node is assigned to one of k cells with
probability 1/k. In the second algorithm an extra parameter
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Table 2: Design of experiments.
Algorithm Samples Parameters
Ring Lattice 25 n = 250, k = 2, 4, .., 50
Random 1. (prob.) 17 n = 250, p = 0.10, 0.15, ..0.90
Random 2. (number) 17 n = 250, m = 311, 622, .., 28012
Small World 1. (rewire) 484 n = 250, k = 2, 4, .., 50, p = 0.10, 0.15, .., 0.90
Small World 2. (number) 1250 n = 250, k = 2, 4, .., 50, l = 1, 2, .., 10, r = 1, 2, .., 5
Small World 3. (prob.) 2670 n = 250, k = 2, 4, .., 50, p = 0.20, 0.30, .., 0.80, q = 0.20, 0.30, .., 0.80, r = 1, 2, .., 5
Scale Free 1. (pref.) 729 n = 250, n0 = 10, 15, .., 50, p = 0.10, 0.20, .., 0.90, p0 = 0.10, 0.20, .., 0.90
Scale Free 2. (power) 45 n = 250, m = 311, 622, .., 28012, r = 1, 2, .., 5
Cellular 1. (uniform) 360 n = 250, k = 2, 4, .., 20, p = 0.25, 0.35, .., 0.75, q = 0.25, 0.35, .., 0.75
Cellular 2. (power) 360 n = 250, k = 2, 4, .., 20, p = 0.25, 0.35, .., 0.75, q = 0.25, 0.35, .., 0.75, r = 1
Core-Periphery 1. (uniform) 54 n = 250, p0 = 0.10, 0.20, .., 0.90, p = 0.25, 0.35, .., 0.75
Core-Periphery 2. (pref.) 54 n = 250, p0 = 0.10, 0.20, .., 0.90, p = 0.25, 0.35, .., 0.75

controls the distribution of the size of the cells (r), nodes are
assigned to cell i with probability pi = 1/ir, which entails a
power-law distribution for the cell size.
In Table 1 we summarize the 13 algorithms, their inputs and
their author.

3.2 Determining Topology Types
In order to determine the type of topology of a network or a
sub-network there are two main approaches: generative and
discriminative.

According to the generative approach, given an observed
network we use its adjacency matrix to estimate the param-
eters underlying the sampling algorithms associated with the
pure types. We then compare the estimates; the pure type
associated with the “best” estimates is chosen as the pure
topology type for the given network. The notion of “good”
estimate can be made precise in both a probabilistic and a
deterministic fashion, in terms of likelihood or distance, re-
spectively. According to the discriminative approach, given
an observed network we disregard the possible ways it may
be sampled and we focus on the topological properties in-
stead, as captured by a set of metrics for network analysis,
widely adopted in the social and physical sciences. In partic-
ular, we sample a large quantity of networks, with different
parameter values, for each pure type. We then compute
the corresponding metrics for each of them, and we train
Bayesian classifiers that are good at discriminating between
the types. Given an observed network we classify it into a
type according to the posterior probability of types given its
adjacency matrix. In this paper we follow the discriminative
approach.

The generative approach is more desirable, in principle, be-
cause it allows for a clean interpretation of the type assign-
ments in terms of the parameters underlying sampling al-
gorithms. Unfortunately, it is hard to establish a compre-
hensive framework for all pure types. For example, multi-
ple algorithms exist that generate the same topology type.
These algorithms involve different parameters that can be
difficult to estimate from the adjacency matrix in a con-
sistent fashion, without bias. Different algorithms differ in
crucial dimensions, e.g., the a small-world topology requires
the existence of two metrics, as we noted above. It is not
possible to posit a simple generative model that is able to
generate all topologies as a smooth function of its underlying
parameters. Further obstacles exist.

The discriminative approach leads to less interpretable re-

sult, as it disregards the way a given network topology arises
and focuses on its measurable properties instead. This ap-
proach is very useful in practice, though. We can sample a
large quantity of networks, as we explore the full parameter
space for each one of the sampling algorithms, in order to
obtain a representative sample of instances of pure topology
types. We then compute the metrics on the networks in the
sample to obtain profiles for each topology type in terms
of the metrics of interest. At this point, we can learn the
mapping from metrics of interest to pure topology types us-
ing our favorite classification method. Classification errors
indicate the degree to which pairs of pure topology types
overlap in the reference space of metrics, see Figure 1.

4. EXPERIMENTS
Here we present the experiments to assess stability and sep-
arability of pure topology types. The classification meth-
ods we used are off-the-shelf classifiers, such as näıve Bayes
(based on Multinomial and Poisson distributions), logistic
regression, maximum entropy, SVM (with a linear kernel),
voted perceptron, decision trees and k-nearest neighbor [15].

The results below correspond to the Poisosn flavor of näıve
Bayes classifier that turned out to be more accurate in pre-
dicting the topology type of a given network [4]. In order to
estimate the prediction errors we used a stratified five-fold
cross validation scheme. The stratification controls that in
every one of the five folds the proportions of networks by
type are the same as the proportions of networks by type in
the overall sample. The stratification aims at balancing the
bias in those experiments where the simpler topologies are
under-represented [28].

4.1 Network Metrics
We focused our analysis on a set of metrics widely adopted
in the social and physical sciences. The metrics we com-
puted for each of the instances of the pure network topology
types were the following3 : degree centrality (no.1-4, central-
ity of a node in terms of its degree distribution), betweenness
centrality (no.5-9, centrality of a node in terms of the short-
est paths it is involved in), closeness centrality (no.9-12),
inverse closeness centrality (no.13-16), eigenvector central-

3Whenever a metric is associated with four indices, it means
that we derived several quantities related to it. These were
the minimum, the maximum, the average, and the standard
deviation.
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Figure 3: Profiles of 47 metrics of interest, excluding shortest path 48-51, as measured over the sampled networks. The left
panel refers to Erdös random topology, whereas the right panel refers to cellular topology. Within each panel, each small plot
shows two histograms in different colors, which summarize the metric values of the two different sampling algorithms for each
topology type. Metrics are numbered left to right, top to bottom.

ity (no.17-20), clustering coefficient (no.21-24, density of the
connectivity around a node), effective network size (no.25-
28), network constraint (no.29-32), node levels (no.33-36),
triad count (no.37-40), global efficiency (no.41), local ef-
ficiency (no.42), efficiency (no.43), connectedness (no.44),
hierarchy (no.45), upper boundedness (no.46), average dis-
tance (no.47), all pairs shortest path (no.48-51). Formal def-
initions are available in Wasserman and Faust (1994) [47].
The metrics we used are available in ORA [14].

4.2 Design of Experiments
Overall, the hypotheses we wish to test are: (1) stability, i.e.,
to what extent different sampling algorithms for the same
pure topology type lead to consistent topological properties,
as captured by the set of metrics of interest, and (2) separa-
bility, i.e., to what extent the embedding of ideal networks
into the reference space of metrics of interest can uniquely
determine the pure topology types.
In order to control for possible sources of variations we were
not interested in, such as size of the network and density, we
devised a design of experiments structured as follows. There
are six topology types. For each topology we explore the pa-
rameter space using an evenly spaced grid; we sampled at
least ten topologies for each parameter configuration, which
resulted in more example networks the more complex gener-
ating algorithms. We attempted to control density and size
of networks, across topologies, to make the discrimination as
hard as possible, and ultimately get estimates of separabil-
ity as low as possible. Further, we attempted to control for
other relevant parameters when generating the same topol-
ogy type using different algorithms, with the goal of making
sampled topologies of a same type very consistent across the
various generating algorithms, and ultimately get estimates
of stability as high as possible.

4.3 Results: Stability and Separability
We start by reporting the stability of topological properties
corresponding to single pure topology types generated with

different algorithms. The figures quoted are five-fold cross-
validated errors in a classification task, the lower the error
is, the less stable topological properties are, since a slight
variation in the sampling algorithm leads to distinguishable
sets of measurements.
Random Graphs. Using the set of metrics we can dis-
tinguish almost exactly which topology was generated by
which algorithm. The extremal statistics (min, max) are
very powerful discriminators in this case. The area under
the Receiver Operating Characteristic (ROC) curve is about
1 and the classification error about is 0.00%.

Core-Periphery. Using the set of metrics we cannot dis-
criminate which topology was generated from which algo-
rithm. The classification error is about 50% and the area
under the ROC curve is 0.501.

Cellular. Using the set of metrics we can discriminate fairly
well which topology was generated from which algorithm.
The area under the ROC curve is 0.928 and the classification
error is 17.64%.

Scale-Free. Using the set of metrics we can discriminate
almost exactly which topology was generated from which
algorithm. The area under the ROC curve is about 1 and
the classification error is 0.07%.

Small-World. Using the set of measures we can poorly
discriminate which topology was generated from which al-
gorithm. The area under the ROC curve is not available
(this is a three-way classification problem) and the classifi-
cation error is 24.78% (base error is at 33.33%). Pairwise
comparisons suggest that our classifiers may be too simple,
in fact, they can not distinguish the three algorithms at the
same time, even as pairs of them are fairly distinguishable.

We now report the overall stability and separability of sam-
pling algorithms for different pure topology types. Table
4 below summarizes the five-fold cross-validated errors in
the corresponding classification tasks. Diagonal cells repli-
cate the stability results discussed above. Off-diagonal cells
quote separability results. The lower the error is, the more
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Figure 4: Profiles of 47 metrics of interest, excluding shortest path 48-51, as measured over the sampled networks. The left
panel refers to scale free topology, whereas the right panel refers to core-periphery topology. Within each panel, each small
plot shows two histograms in different colors, which summarize the metric values of the two different sampling algorithms for
each topology type. Metrics are numbered left to right, top to bottom.

Table 3: Stability of small world topology types.
SW 1. SW 2. SW 3.

SW 1. 16.04% 21.12%
SW 2. 13.31%
SW 3.

separable topological properties are, since the instances of
different pure types entail distinguishable sets of metrics.

Table 4: Joint study of stability and separability of pure
topology types. The column labels are: RL for ring lattice,
Rnd for Erdös random, SW for small world, SF for scale
free, Cel for cellular and CP for core-periphery.

RL Rnd SW SF Cel CP
RL N/A 27.00% 7.45% 0.00% 0.00% 0.00%
Rnd 0.00% 41.22% 27.94% 32.55% 25.00%
SW 24.78% 8.66% 13.12% 5.31%
SF 0.07% 26.45% 33.33%
Cel 17.64% 37.15%
CP 50.00%

5. DISCUSSION
Our experiments point out few limitations of the sampling
algorithms we used that are worth discussing.

1. Unrealistic variability profiles.

Both the generative algorithms we surveyed and those we
introduced are very simple. Algorithms may entail “no vari-
ability” for a specific metric over a fairly large range of pa-
rameter values, or by construction, e.g., all instances of an
Erdös random (n, m) have the same number of edges, i.e.,
m. While these algorithms are of theoretical value and help
us grasp insights about phenomena of interest, it is very
dangerous to employ them for statistical testing purposes,
e.g., to compute p-values, as it is often done in practice.

This is because rich variability profiles are crucial in de-
termining the stability of topological properties of a pure
type to alternative sampling algorithms that generate it. In
other words, low variability profiles lead to high sensitivity
of topological properties, as captured by the metrics of inter-
est, and ultimately to high sensitivity of relevant statistics
to the specific version of the algorithms adopted. For ex-
ample, the variability profile of the clustering coefficient is
extremely sensitive to the specific algorithm used to sample
both random and scale free types. As a consequence the
p-value, e.g., of small-world-ness, will vary.
A simple suggestion to overcome this problem is to sample
topology types according to different algorithms, and then to
mix the networks, somehow. This directly aims at increasing
the variability profiles of the metrics of interest, and possibly
leads to more robust, e.g., p-values.

2. Two main flavors of topological properties.

Table 4 suggests that cellular, core-periphery and scale free
types are weakly separable, and share common topological
properties with random types. These types are separable
from small world topologies that, in turn, shares a set of
different topological properties with random types. Note
that, key differences between cellular, core-periphery, scale
free and random are that (a) more apparent at moderate
density ( apx .25 range) and (b) certain metrics can be used
to separate these four types of networks.

3. Low stability and low separability.

Overall, alternative sampling algorithms we considered for
the same type appear very similar. Yet topological prop-
erties are neither stable to alternative algorithms that are
meant to generate the same topology type, nor separable
across different topology types.
The low stability (not desirable) is likely to be a consequence
of the fact that the algorithms are too simple and do not lead
to rich enough variability profiles for the metrics of interest.

Page 20Volume 7, Issue 2SIGKDD Explorations



Figure 5: Profiles of 47 metrics of interest for small world
topology, excluding shortest path 48-51, as measured over
the sampled networks. Each small plot shows three his-
tograms in different colors, which summarize the metric val-
ues of the three different sampling algorithms. Metrics are
numbered left to right, top to bottom.

In fact, we find that the extremal statistics (min and max)
have high information gain with respect to the topology type
categories, and drive the classification in several cases.

The low separability (not desirable) means that pure types
are stylized models of behavior at the sampling level, which
lead to networks that share topological properties, as cap-
tured by the network metrics of interest. Aside from the
simplicity of the algorithms, this is consistent with what we
would expect to see in the real world, i.e., observed networks
display multiple stylized behaviors to different degrees. This
translates into the more realistic hypothesis of “mixtures of
types,” at the sampling level, as a better starting point for
developing models and algorithms for network analysis.

6. CONCLUDING REMARKS
We surveyed pure topology types along with existing sam-
pling algorithms that generate them. We introduced novel
algorithms that enhance the diversity of samples, and ad-
dress the case of cellular topologies. We performed statisti-
cal studies of the stability and separability of the topologi-
cal properties of pure types, as captured by a set of network
metrics of interest, widely adopted in the social and physical
sciences.

We find that the sampling algorithms considered are neither
stable to alternative specifications, nor separable in terms of
the topological properties they entail. The lack of stability is
a cause of concern. We encourage the practitioners who em-
ploy the simple sampling algorithms discussed in this paper
to consider more variable schemes, for example, mixtures, in
order to obtain more robust p-values and statistics in gen-
eral. The lack of separability was somewhat anticipated, as
real world networks hardly present the variability profile of
a single pure type. We conclude by suggesting the assump-
tion of “mixtures of types” as an alternative starting point
for developing models and algorithms for network analysis.
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